Home
Class 11
MATHS
Prove the following by using the princip...

Prove the following by using the principle of mathematical induction for all `n in N`:`a+a r+a r^2+dotdotdot+a r^(n-1)=(a(r^n-1))/(r-1)`

Text Solution

Verified by Experts

`P(n):a+ar+ar^(2)+………+ar^(n-1) =(1(r^(n)-1))/(r-1)`
For n=1
`L.H.S. =a R.H.S. = (1(r^(1)-1))/(r-1) =a`
`:. " "L.H.S. =R.H.S.`
`rArr` P(n) is true for n=1
Let P (n) be true for n=k
`:. P(K) : a +ar + ar^(2) +......+ ar^(K-1) =(a(r^(k)-1))/(r-1)`
For n=K+1
`P(k+1) : a + ar + ar^(2) + ....+ ar^(k-1)+ar^(k)`
`=1((r^(k)-1))/(r-1)+ar^(k)`
`=(a[(r^(k)-1)+r^(k)(r-1)]]/(r-1)`
`=(a(r^(k)-1+r^(k+1)-r^(k)))/(r-1)=(1(r^(k+1)-1))/(r-1)`
`rArr` P (n) is also true for n=K+1
Hence from the principle of mathematical induction P (n) is true foa all natural numbers n.
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN|Exercise Exercise 4.1|1 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|11 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|10 Videos

Similar Questions

Explore conceptually related problems

Prove the following by using the Principle of mathematical induction AA n in N 2^(n+1)>2n+1

Prove the following by using the principle of mathematical induction for all n in Nvdotsa+ar+ar^(2)+...+ar^(n-1)=(a(r^(n)-1))/(r-1)

Prove the following by the principle of mathematical induction: 1+2+2^(7)=2^(n+1)-1 for all n in N

Prove the following by using the principle of mathematical induction for all n in Nvdots10^(2n-1)+1 is divisible by 11.

Prove the following by using the principle of mathematical induction for all n in Nvdotsn(n+1)(n+5) is a multiple of 3.

Prove the following by using the principle of mathematical induction for all n in Nvdots1+3+3^(2)+...+3^(n-1)=((3^(n)-1))/(2)

Prove the following by using the principle of mathematical induction for all n in Nvdots1+2+3+...+n<(1)/(8)(2n+1)^(2)

Prove the following by using the principle of mathematical induction. n(n+1)+1 is an odd natural number, n in N .

Prove by the principle of mathematical induction that n(n+1)(2n+1) is divisible by 6 for all n in N

Prove the following by the principle of mathematical induction: ((2n)!)/(2^(2n)(n!)^(2))<=(1)/(sqrt(3n+1)) for all n in N

NAGEEN PRAKASHAN-PRINCIPLE OF MATHEMATICAL INDUCTION-Exercise 4
  1. 1.3+2.3^2+3.3^3+..............+n.3^n=((2n-1)3^(n+1)+3)/4

    Text Solution

    |

  2. Prove by PMI that 1.2+ 2.3+3.4+....+ n(n+1) =((n)(n+1)(n+2))/3, AA n i...

    Text Solution

    |

  3. 1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^2+6n-1))/3

    Text Solution

    |

  4. 1.2+2.2^2+3.2^3+.....+n.2^n=(n-1)2^(n-1)+2

    Text Solution

    |

  5. 1/2+1/4+1/8+1/16+.......+1/2^n=

    Text Solution

    |

  6. Prove the following by the principle of mathematical induction:1/(2...

    Text Solution

    |

  7. Using the principle of mathematical induction prove that 1/(1. 2. ...

    Text Solution

    |

  8. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  9. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  10. (1+(1)/1)(1+(1)/(2))(1+(1)/(3))......(1+(1)/n) n(n+1)

    Text Solution

    |

  11. 1^(2)+3^(2)+5^(2)+.......+(2n-1)^(2) =(n(2n-1)(2n+1))/(3)

    Text Solution

    |

  12. Prove the following by the principle of mathematical induction: 1/(1...

    Text Solution

    |

  13. Prove the following by the principle of mathematical induction: 1/(...

    Text Solution

    |

  14. Prove that 1+2+3+4........+N<1/8(2n+1)^2

    Text Solution

    |

  15. Prove that n(n+1)(n+5) is a multiple of 3.

    Text Solution

    |

  16. Prove by the principle of induction that for all n N ,\ (10^(2n-1)+1)...

    Text Solution

    |

  17. x^(2n-1)+y^(2n-1) is divisible by x+y

    Text Solution

    |

  18. 3^(2n+2)-8n-9 divisible by 8

    Text Solution

    |

  19. 4 1^n-1 4^n is a multiple of 27

    Text Solution

    |

  20. Prove the following (2n+7) lt (n+3)^(2)

    Text Solution

    |