Home
Class 11
MATHS
If x+ iy=(1+ 4i)(1+5i), then (x^(2)+y^(2...

If `x+ iy=(1+ 4i)(1+5i)`, then `(x^(2)+y^(2))` is equal to :

A

17

B

26

C

442

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ x + iy = (1 + 4i)(1 + 5i) \] ### Step 1: Multiply the complex numbers We need to multiply the two complex numbers on the right side: \[ (1 + 4i)(1 + 5i) = 1 \cdot 1 + 1 \cdot 5i + 4i \cdot 1 + 4i \cdot 5i \] ### Step 2: Simplify the multiplication Calculating each term: - \( 1 \cdot 1 = 1 \) - \( 1 \cdot 5i = 5i \) - \( 4i \cdot 1 = 4i \) - \( 4i \cdot 5i = 20i^2 = 20(-1) = -20 \) Now, combine these results: \[ 1 + 5i + 4i - 20 = 1 - 20 + (5i + 4i) = -19 + 9i \] ### Step 3: Identify the real and imaginary parts From the expression \( x + iy = -19 + 9i \), we can identify: - Real part \( x = -19 \) - Imaginary part \( y = 9 \) ### Step 4: Calculate \( x^2 + y^2 \) Now we need to find \( x^2 + y^2 \): \[ x^2 + y^2 = (-19)^2 + 9^2 \] Calculating each square: - \( (-19)^2 = 361 \) - \( 9^2 = 81 \) Adding these together: \[ x^2 + y^2 = 361 + 81 = 442 \] ### Final Answer Thus, the value of \( x^2 + y^2 \) is: \[ \boxed{442} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5F|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5.1|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5D|6 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

If (-7-24i)^(1/2)=x-iy , then x^(2)+y^(2) is equal to

If x+iy=(1+i)(1+2i)(1+3i) , then x^(2)+y^(2) equals:

If ((a^(2)+1)^(2))/(2a-i)=x=iy, then x^(2)+y^(2) is equal to ((a^(2)+1)^(4))/(4a^(2)+1) b.((a+1)^(2))/(4a^(2)+1) c.((a^(2)-1)^(2))/((4a^(2)-1)^(2)) d.none of these

If x+iy=(1+2i)/(2+i) prove that x^(2)+y^(2)=1

If x+iy=sqrt((3+4i)/(5+12i)) then 169(x^(2)+y^(2))^(2)=