Home
Class 11
MATHS
(1-i)^(4)...

`(1-i)^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((1 - i)^4\), we can follow these steps: ### Step 1: Expand \((1 - i)^4\) using the Binomial Theorem The Binomial Theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In our case, \(a = 1\), \(b = -i\), and \(n = 4\). Using the Binomial Theorem: \[ (1 - i)^4 = \sum_{k=0}^{4} \binom{4}{k} (1)^{4-k} (-i)^k \] ### Step 2: Calculate each term of the expansion Now we calculate each term for \(k = 0\) to \(k = 4\): - For \(k = 0\): \[ \binom{4}{0} (1)^{4} (-i)^{0} = 1 \] - For \(k = 1\): \[ \binom{4}{1} (1)^{3} (-i)^{1} = 4(-i) = -4i \] - For \(k = 2\): \[ \binom{4}{2} (1)^{2} (-i)^{2} = 6(-1) = -6 \] - For \(k = 3\): \[ \binom{4}{3} (1)^{1} (-i)^{3} = 4(-i^3) = 4i \] (since \(i^3 = -i\)) - For \(k = 4\): \[ \binom{4}{4} (1)^{0} (-i)^{4} = 1(1) = 1 \] (since \(i^4 = 1\)) ### Step 3: Combine all the terms Now we combine all the terms: \[ (1 - i)^4 = 1 - 4i - 6 + 4i + 1 \] ### Step 4: Simplify the expression Combine like terms: \[ (1 - 6 + 1) + (-4i + 4i) = -4 + 0i = -4 \] ### Final Answer Thus, the value of \((1 - i)^4\) is: \[ \boxed{-4} \]

To solve the expression \((1 - i)^4\), we can follow these steps: ### Step 1: Expand \((1 - i)^4\) using the Binomial Theorem The Binomial Theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In our case, \(a = 1\), \(b = -i\), and \(n = 4\). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5.2|8 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5.3|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5F|10 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

(v) (1-i) ^ (2) (1 + i) - (3-4i) ^ (2)

Convert each of the following in the form of (a + i b) : (i) 3(1+i)-2(2+3i) (ii) (1)/(4-5i) (iii) (1-2i)^(-2) (iv) (2-3i)/(3+5i) (v) [(1)/(1-2i)+(3)/(1+i)][(3+4i)/(2-4i)]

Reduce ((1)/(1-4i)-(2)/(1+i))((3-4i)/(5+i)) to the standard form.

Express the following complex numbers in the standard form a+ib:((1)/(1-4i)-(2)/(1+i))((3-4i)/(5+i))

(1)/(1-2i)+(3)/(1+4i)

Express each one of the following in the standard form a+ib:((1)/(1-2i)+(3)/(1+i))((3+4i)/(2-4i))

^22C_(5)+sum_(i=1)^(4)*^(26-i)C_(4)=

Express: ((1+i)^(3))/(4+3i) in the form a+ib

(a) Express (1+7i)/((2-i)^(2)) in the form a+ib. (b) Reduce (1)/(1-4i)-(2)/(1+i) in the form a+ib.