Home
Class 11
MATHS
(-2-(1)/(3)i)^(3)...

`(-2-(1)/(3)i)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((-2 - \frac{1}{3}i)^3\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ (-2 - \frac{1}{3}i)^3 \] ### Step 2: Factor out \(-1\) We can factor out \(-1\) from the expression: \[ = (-1)^3 \cdot (2 + \frac{1}{3}i)^3 \] This simplifies to: \[ = - (2 + \frac{1}{3}i)^3 \] ### Step 3: Use the binomial expansion Now we apply the binomial expansion formula \((a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\), where \(a = 2\) and \(b = \frac{1}{3}i\): \[ = - \left(2^3 + 3 \cdot 2^2 \cdot \frac{1}{3}i + 3 \cdot 2 \cdot \left(\frac{1}{3}i\right)^2 + \left(\frac{1}{3}i\right)^3\right) \] ### Step 4: Calculate each term Calculating each term: - \(2^3 = 8\) - \(3 \cdot 2^2 \cdot \frac{1}{3}i = 3 \cdot 4 \cdot \frac{1}{3}i = 4i\) - \(3 \cdot 2 \cdot \left(\frac{1}{3}i\right)^2 = 3 \cdot 2 \cdot \frac{-1}{9} = -\frac{6}{9} = -\frac{2}{3}\) - \(\left(\frac{1}{3}i\right)^3 = \frac{1}{27}i^3 = \frac{1}{27}(-i) = -\frac{1}{27}i\) ### Step 5: Combine the terms Now we combine all these terms: \[ = - \left(8 + 4i - \frac{2}{3} - \frac{1}{27}i\right) \] Combining the real parts: \[ = - \left(8 - \frac{2}{3}\right) + - \left(4i - \frac{1}{27}i\right) \] ### Step 6: Simplify the real part To combine \(8\) and \(-\frac{2}{3}\): \[ 8 = \frac{24}{3} \quad \Rightarrow \quad \frac{24}{3} - \frac{2}{3} = \frac{22}{3} \] So the real part becomes: \[ - \frac{22}{3} \] ### Step 7: Simplify the imaginary part Now for the imaginary part: \[ 4i - \frac{1}{27}i = \left(4 - \frac{1}{27}\right)i \] To combine \(4\) and \(-\frac{1}{27}\): \[ 4 = \frac{108}{27} \quad \Rightarrow \quad \frac{108}{27} - \frac{1}{27} = \frac{107}{27} \] So the imaginary part becomes: \[ -\frac{107}{27}i \] ### Step 8: Final expression Putting it all together, we have: \[ = -\left(\frac{22}{3} + \frac{107}{27}i\right) \] Thus, the final result is: \[ = -\frac{22}{3} - \frac{107}{27}i \]

To evaluate the expression \((-2 - \frac{1}{3}i)^3\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ (-2 - \frac{1}{3}i)^3 \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5.2|8 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5.3|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5F|10 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

(-2-i(1)/(3))^(3)

Express the following in the form a +ib: (-2-i(1)/(3))^(3)

(a) Write the conjugates of the following: (i) 3+i (ii) 3-i (iii) -sqrt(5)-sqrt(7)i (iv) -sqrt(5)i (v) (4)/(5) (vi) 49-(i)/(7) (vii) (1-i)/(1+i) (viii) (1+i)^(2) (ix) (2+5i)^(2) (x) (-2-(1)/(3)i)^(3) (b) Find the real number x and y if: (i) (x-iy)(3+5i) is the conjugate of -6-24 i (ii) -3+ix^(2)y and x^(2)+y+4i are congugate of each other.

Convert the following in the form of (a+ib) : (i) (1+i)^(4) (ii) (-3+(1)/(2)i)^(3) (iii) (1-i)(3+4i) (iv) (1+i)(1+ 2i)(1+ 3i) (v) (3+5i)/(6-i) (vi) ((2+3i)^(2))/(2+i) (vii) ((1+ i)(2+i))/((3+i)) (viii) (2-i)^(-3)

((1)/(3)+3i)^(3)=((1)/(3))^(3)+(3i)^(3)+3(1)/(3))(( 1)/(3)+3i)

Simplify : {:((i),3(6+6i)+i(6+6i),(ii),(1-i)-(-3+6i)),((iii),((1)/(3)-(2)/(3)i)-(4+(3)/(2)i),(iv),{((1)/(5)+(7)/(5)i)-(6+(1)/(5)i)}-((-4)/(5)+i)):}

((1+i)^(2))/(3-i)

Reduce ((1)/(1+2i)+(3)/(1-i))((3-2i)/(1+3i)) to the form (a + ib).

Express each one of the following in the standard form a+ib:((1)/(1-2i)+(3)/(1+i))((3+4i)/(2-4i))

Express the following complex numbers in the standard form a+ib:((2+1)^(3))/(2+3i)