Home
Class 11
MATHS
z=-sqrt(3)+i find modulus and argument...

`z=-sqrt(3)+i` find modulus and argument

A

`1, 100^@`

B

`2, 150^@`

C

`3, 200^@`

D

`4, 250^@`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus and argument of the complex number \( z = -\sqrt{3} + i \), we will follow these steps: ### Step 1: Identify the real and imaginary parts The complex number can be expressed as: - Real part \( a = -\sqrt{3} \) - Imaginary part \( b = 1 \) ### Step 2: Calculate the modulus The modulus \( r \) of a complex number \( z = a + bi \) is given by the formula: \[ r = \sqrt{a^2 + b^2} \] Substituting the values of \( a \) and \( b \): \[ r = \sqrt{(-\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \] ### Step 3: Calculate the argument The argument \( \theta \) of a complex number is given by: \[ \tan \theta = \frac{b}{a} \] Substituting the values of \( a \) and \( b \): \[ \tan \theta = \frac{1}{-\sqrt{3}} = -\frac{1}{\sqrt{3}} \] This value corresponds to an angle in the second quadrant since the real part is negative and the imaginary part is positive. The reference angle where \( \tan \theta = \frac{1}{\sqrt{3}} \) is \( 30^\circ \). Therefore, in the second quadrant, the angle is: \[ \theta = 180^\circ - 30^\circ = 150^\circ \] ### Final Result - Modulus \( r = 2 \) - Argument \( \theta = 150^\circ \)

To find the modulus and argument of the complex number \( z = -\sqrt{3} + i \), we will follow these steps: ### Step 1: Identify the real and imaginary parts The complex number can be expressed as: - Real part \( a = -\sqrt{3} \) - Imaginary part \( b = 1 \) ### Step 2: Calculate the modulus ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5.3|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5.1|14 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Find the modulus and argument of -3.

Find the modulus and argument of -4i.

Express z=(-1+isqrt(3))/(1+i) in polar form and then find the modulus and argument of z. Hence deduce the value of cos (5pi)/(12)

Let z_(1)= cos 12^(@) + I sin 12^(@) and z_(2) = cos 48^(@) + i. sin 48^(@) . Write complex number (z_(1) + z_(2)) in polar form. Find its modulus and argument.

Covert the complex number z = 1 + cos (8pi)/(5) + i. sin (8pi)/(5) in polar form. Find its modulus and argument.

If z is a complex number of unit modulus and argument theta , then the real part of (z(1-barz))/(barz(1+z)) , is

If z is a complex number of unit modulus and argument theta , then arg((1+z)/(1+bar(z))) equals to

Find the modulus and the arguments of the complex number z=-sqrt(3)+i

Find the modulus and argument of the complex number -2+2sqrt3i