Home
Class 11
MATHS
x^2+x+1/(sqrt(2))=0...

`x^2+x+1/(sqrt(2))=0`

Text Solution

Verified by Experts

The correct Answer is:
N/a

Given equaton is `x ^(2) +x+(1)/(sqrt(2))=0`
Here, `A=1, B =1, C=(1)/(sqrt(2))`
Discriminant `D=B^(2)-4 AC`
`" "=(1)^(2)- 4xx1xx(1)/(sqrt(2)) `
`" "=1-2xxsqrt(2)xxsqrt(2)xx(1)/(sqrt(2)) `
`" "=1-2sqrt(2)`
`therefore" "x=(-Bpmsqrt(D))/(2A)`
`rArr" "x=(-1pmsqrt(-(2sqrt(2)-1)))/(2)`
`" "=(-1pmsqrt((2sqrt(2)-1)i^(2)) ) /(2)`
`rArr" "x=(-1pmisqrt(2sqrt(2) -1))/(2)`
Therefore, solutions of equation are
`" "x=(-1pmisqrt(2sqrt(2)- 1))/(2)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5.2|8 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

State whether the following quadratic equations have two distinct real roots. Justicy your answer: sqrt(2)x^(2)-3/(sqrt(2))x+1/(sqrt(2))=0

x^(2)+(x)/(sqrt(2))+1=0

Solve the equation: x^(2)+(x)/(sqrt(2))+1=0

Solve the equation x^(2)+(x)/(sqrt(2))+1=0

Solve the following quadratic: x^(2)+(x)/(sqrt(2))+1=0

Solve the equation by using the general expression for roots of a quadratic equation: x^(2)+(x)/(sqrt(2))+1=0

A solution of sin^-1 (1) -sin^-1 (sqrt(3)/x^2)- pi/6 =0 is (A) x=-sqrt(2) (B) x=sqrt(2) (C) x=2 (D) x= 1/sqrt(2)

Consider the function f(x)={(1-a^x+x a^x ln a)/(a^xx^2); x 0 where a > 0. If g(x) is continuous at x=0 then a=sqrt(2) (b) g(0)=1/8(ln2)^2 a=1/(sqrt(2)) (d) g(0)=1/2ln2

ysqrt(1-x^(2)) dy + x sqrt(1-y^(2)) dx=0

2x^(2)-2sqrt(2)x+1=0