Home
Class 11
MATHS
Prove that Re (z1 z2)= Re z1 Re z2 - Imz...

Prove that `Re (z_1 z_2)= Re z_1 Re z_2 - Imz_1 Imz_2` ,

Text Solution

Verified by Experts

The correct Answer is:
N/a

Let `z_(1)=x_(1)+iy_(1) and z_(2)=x_(2)+iy_(2)`
`z_(1)z_(2)=(x_(1)+iy_(1))(x_(2)+iy_(2))`
`" " =x_(1)x_(2)+i(x_(1)y_(2) +x_(2)y_(1 ))+i^(2) y_(1)y_(2 )`
`" "=(x_(1) x_(2)-y_(1)y_(2))+i( x_(1)y_(2)+x_(2)y_(1))`
Then, real part of `z_(1)z_(2)`
`Re(z_(1)z_(2))=(x_(1)x_(2)-y_(1)y_(2))`
`" "=Rez_(1)Rez_(2)- Im z_(1)Imz_(2)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5.3|10 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Prove that Re (z_ (1) z_ (2)) = Re z_ (1) Rez_ (2) -Im z_ (1) Im z_ (2)

For any two complex numbers z_(1) and prove that quad Re(z_(1)z_(2))=Re z_(1)Re z_(2)-|mz_(1)|mz_(2)

If z_(1),z_(2) are complex number such that Re(z_(1) ) = |z_(1) - 1| , Re(z_(2)) = |z_(2) -1| and arg(z_(1) - z_(2)) = (pi)/(3) , then Im (z_(1) + z_(2)) is equal to

If z_(1)=a+ib and z_(2)=c+id are complex numbers such that Re(z_(1)bar(z)_(2))=0, then the |z_(1)|=|z_(2)|=1 and Re(z_(1)bar(z)_(2))=0, then the pair ofcomplex nunmbers omega=a+ic and omega_(2)=b+id satisfies

If z, z _1 and z_2 are complex numbers such that z = z _1 z_2 and |barz_2 - z_1| le 1 , then maximum value of |z| - Re(z) is _____.

If z_(1) , z_(2) are complex numbers such that Re(z_(1))=|z_(1)-2| , Re(z_(2))=|z_(2)-2| and arg(z_(1)-z_(2))=pi//3 , then Im(z_(1)+z_(2))=

If |z_1-1|=Re(z_1),|z_2-1|=Re(z_2) and arg (z_1-z_2)=pi/3, then Im (z_1+z_2) =

Read the following writeup carefully: If z_1 = a+ib and z_2 =c + id be two complex numbers such that |z_1| = |z_2|=1 and "Re" (z_1 bar(z_2))=0 . Now answer the following question Let k = |z_1 + z_2| + |a+ ib| , then the value of k is

NAGEEN PRAKASHAN-COMPLEX NUMBERS AND QUADRATIC EQUATION -MISCELLANEOUS EXERCISE
  1. Evaluate : [i^(18)+(1/i)^(25)]^3

    Text Solution

    |

  2. Prove that Re (z1 z2)= Re z1 Re z2 - Imz1 Imz2 ,

    Text Solution

    |

  3. Reduce (1/(1-4i)-2/(1+i))((3-4i)/(5+i))to the standard form.

    Text Solution

    |

  4. If (a+i b)/(c+i d)=x+i y , prove that (a-i b)/(c-i d)=x-i ya n d(a^2+b...

    Text Solution

    |

  5. Convert the following in the polar form : (i) (1+7i)/((2-i)^2) (ii) (...

    Text Solution

    |

  6. Solve the equation : 3x^2-4x+(20)/3=0

    Text Solution

    |

  7. x^(2)-2x+(3)/(2)=0

    Text Solution

    |

  8. Solve the equation :27 x^2-10 x+1=0

    Text Solution

    |

  9. Solve the following quadratic: 21 x^2-28 x+10=0

    Text Solution

    |

  10. If z1=2-i ,z2=1+i ,find |(z1+z2+1)/(z1-z2+i)|

    Text Solution

    |

  11. If a + i b =((x+i)^2)/(2x^2+1),prove that a^2+b^2=((x^2+1)^2)/((2x^2+...

    Text Solution

    |

  12. Let z1=2-i ,z2=-2+i. Find (i) Re ((z1z2)/( bar z1)) (ii) Im(1/(z1 bar...

    Text Solution

    |

  13. Find the modulus and argument of the complex number (1+2i)/(1-3i).

    Text Solution

    |

  14. Find the real numbers x\ a n d\ y , if (x-i y)(3+5i) is the conjugate ...

    Text Solution

    |

  15. Find the modulus of (1+i)/(1-i)-(1-i)/(1+i).

    Text Solution

    |

  16. If (x+i y)^3=u+i v ,then show that u/x+v/y=4(x^2-y^2).

    Text Solution

    |

  17. If alpha and beta are different complex number with |beta|=1, then f...

    Text Solution

    |

  18. Find the number of non-zero integral solutions of the equation |1-i|^...

    Text Solution

    |

  19. If (a + i b) (c + i d) (e + i f) (g + i h) = A + i B, then show that (...

    Text Solution

    |

  20. If ((1+i)/(1-i))^m=1, then find the least positive integral value of m...

    Text Solution

    |