Home
Class 11
MATHS
Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1...

Prove that: `((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot`

Text Solution

Verified by Experts

`L.H.S = ((2n)!)/(n!)`
`= (1.2.3.4.5.6..(2n-1).(2n))/(n!)`
`= ({2.4.6...(2n)}.{1.3.5....(2n-1)})/(n!)`
`= (2^(n){1.2.3...n}{1.3.5...(2n-1)})/(n!)`
`= 2^(n) {1.3.5..(2n-1)}`
`= R.H.S` Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Exercise A|9 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Exercise B|10 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN|Exercise Exercise 4|29 Videos

Similar Questions

Explore conceptually related problems

Prove that ((2n+1)!)/(n!)=2^(n){1.3.5(2n-1)(2n+1)}

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

Prove that: :2^(n)C_(n)=(2^(n)[1.3.5(2n-1)])/(n!)

Prove that ((4n)C_(2n))/((2n)C_(n))=(1.3.5...(4n-1))/([1.3.5...(2n-1)]^(2))

Prove that ((2n)!)/(n!) =2^(n) xx{1xx3xx5xx...xx(2n-1)}.

Prove that .^(2n)C_(n)=(2^(n)xx[1*3*5...(2n-1)])/(n !) .

Prove that ((2n)!)/(2^(2n)(n!)^(2))<=(1)/(sqrt(3n+1)) for all n in N

Prove that (^(2n)C_0)^2+(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Prove that :1+2+3+...+n=(n(n+1))/(2)

Prove that 1+2+3+.....n=(n(n+1))/(2)