Home
Class 11
MATHS
For all positive integers n , show that ...

For all positive integers `n ,` show that `\ ^(2n)C_n+\ ^(2n)C_(n-1)=1/2(\ ^(2n+2)C_(n+1))` .

Text Solution

Verified by Experts

`L.H.S = .^(2n)C_(n) + .^(2n)C_(n-1)`
`= .^(2n+1)C_(n) ( :' .^(n)C_(r) +.^(n)C_(r-1) = .^(n+1)C_(r))`
`= ((2n+1)!)/(n!(2n+1-n)!)`
`= ((2n+2)(2n+1)!)/((2n+2).n!(n+1)!)`
`= ((2n+1)!)/(2.(n+1).n!(n+1)!)`
`=(1)/(2).((2n+2)!)/((n+1)!(n+1)!)`
`= (1)/(2) .^(2n+1)C_(N+1) = R.H.S`. Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Exercise A|9 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Exercise B|10 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN|Exercise Exercise 4|29 Videos

Similar Questions

Explore conceptually related problems

For all positive integers n, show that ^2nC_(n)+^(2n)C_(n-1)=(1)/(2)(^(2n+2)C_(n+1))

If n is a positive integer show that (n+1)^(2)+(n+2)^(2)+....4n^(2)=(n)/(6)(2n+1)(7n+1)

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

What is ""^(n)C_(1)+ ""^(n)C_(2)+……… + ""^(n)C_(n) ?

If n is a positive integer then ^nC_r+^nC_(r+1)=^(n+1)^C_(r+1) Also coefficient of x^r in the expansion of (1+x)^n=^nC_r. In an identity in x, coefficient of similar powers of x on the two sides re equal. On the basis of above information answer the following question: If n is a positive integer then ^nC_n+^(n+1)C_n+^(n+2)C_n+.....+^(n+k)C_n= (A) ^(n+k+1)C_(n+2) (B) ^(n+k+1)C_(n+1) (C) ^(n+k+1)C_k (D) ^(n+k+1)C_(n-2)

If n is a positvie integers, the value of E=(2n+1).^(n)C_(0)+(2n-1).^(n)C_(1)+(2n-3)^(n)C_(2)+………+1. ^(n)C_(n)2 is

Prove that: :2^(n)C_(n)=(2^(n)[1.3.5(2n-1)])/(n!)

Show that C_(1)+C_(2)+C_(3)+...+C_(n)=1+2+2^(2)+...+2^(n-1)

Prove that .^(2n)C_(n)=(2^(n)xx[1*3*5...(2n-1)])/(n !) .