Home
Class 11
MATHS
Find the value of n if: (i) (n+2)! = 1...

Find the value of n if:
(i) `(n+2)! = 12. n!`
(ii) `(n+2)! = 60-. (n-1)!`
`=({2.4.6....(2n)}{1.3.5....(2.-1)})/(n!)`
`= (2^(n){1.2.3...n}{1.3.5.......(2n-1)})/(n!)`
`= 2^(n) {1.3.5....(2n-1)}`
`= R.H.S`. Hence Proved.
(iii) `(n+3)! = 2550 (n+1)!`
(iv) `(n-2)! = 132. (n-4)!`.

Text Solution

Verified by Experts

The correct Answer is:
(i) `n = 2` (ii) `n = 3` (iii) `n = 48` (iv) `n = 14`
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Exercise B|10 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Exercise C|24 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|11 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN|Exercise Exercise 4|29 Videos

Similar Questions

Explore conceptually related problems

Prove that ((2n+1)!)/(n!)=2^(n){1.3.5(2n-1)(2n+1)}

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

1.2+2.3+3.4+.........+n(n+1)=(1)/(3)n(n+1)(n+3)

Find the value of 2^(n){1.3.5.....(2n-3)(2n-1)}

Find lim_(n rarr oo)((1.3.5...(2n-1)}(n+1)^(4)]+[n^(4)(1.3.5...(2n-1)) (2n+1)]

Prove that: :2^(n)C_(n)=(2^(n)[1.3.5(2n-1)])/(n!)

Prove that: :((2n)!)/(n!)={1.3.5...(2n-1)}2^(n)

1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^(2)+6n-1))/(3)

Prove that .^(2n)C_(n)=(2^(n)xx[1*3*5...(2n-1)])/(n !) .

Lt_(n rarr oo)(1.3.5...(2n-1))/(2.4.6...(2n))=