Home
Class 11
MATHS
If .^(n)C(5) = .^(n)C(7), then find .^(n...

If `.^(n)C_(5) = .^(n)C_(7)`, then find `.^(n)P_(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \(\binom{n}{5} = \binom{n}{7}\), we need to find the value of \(P(n, 3)\). ### Step-by-Step Solution: 1. **Understanding the Equality of Combinations**: We know that \(\binom{n}{r} = \binom{n}{n-r}\). This means that \(\binom{n}{5} = \binom{n}{7}\) implies: \[ 5 = n - 7 \] 2. **Solving for \(n\)**: Rearranging the equation gives: \[ n = 5 + 7 = 12 \] 3. **Finding \(P(n, 3)\)**: Now that we have \(n = 12\), we need to find \(P(12, 3)\). The formula for permutations is given by: \[ P(n, r) = \frac{n!}{(n-r)!} \] Substituting \(n = 12\) and \(r = 3\): \[ P(12, 3) = \frac{12!}{(12-3)!} = \frac{12!}{9!} \] 4. **Simplifying the Permutation**: We can simplify this as follows: \[ P(12, 3) = 12 \times 11 \times 10 \times \frac{9!}{9!} = 12 \times 11 \times 10 \] 5. **Calculating the Final Value**: Now, we calculate: \[ 12 \times 11 = 132 \] \[ 132 \times 10 = 1320 \] Thus, the final answer is: \[ P(12, 3) = 1320 \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Exercise G|34 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Exercise H|10 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Exercise E|8 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN|Exercise Exercise 4|29 Videos

Similar Questions

Explore conceptually related problems

If ""^(n)C_(a)= ""^(n)C_(b) ' then find n.

If .^(n)C_(9)=.^(n)C_(7) , find n.

If .^(n)P_(r)=840,.^(n)C_(r)=35, then find n=

If .^(n)C_(8)=.^(n)C_(6) , find .^(n)C_(3) .

(i) .^(n)C_(7)=.^(n)C_(5) , find n. (ii) If.^(n)C_(14)=.^(n)C_(16) , find .^(n)C_(28) .

If ^(n)C_(5)=^(n)C_(7) ,then the value of n is

(i) If ""^(n)C_(8)= ""^(n)C_(2) , find ""^(n)C_(2) . (ii) If ""^(n)C_(10)= ""^(n)C_(12) , determine n and hence ""^(n)C_(5) . (iii) If ""^(n)C_(9)= ""^(n)C_(8) , find ""^(n)C_(17) .

If ""^(n)C_(7)=""^(n)C_(5) , find ""^(n)C_(4) .

NAGEEN PRAKASHAN-PERMUTATION AND COMBINATION -Exercise F
  1. If .^(n)C(10) = .^(n)C(15), then evaluate .^(27)C(n).

    Text Solution

    |

  2. If .^(18)C(r) = .^(18)C(r+1), then evaluate .^(r)C(5).

    Text Solution

    |

  3. If .^(n)C(5) = .^(n)C(7), then find .^(n)P(3)

    Text Solution

    |

  4. If .^(16)C(r) = .^(16)C(r+6), then find .^(5)C(r).

    Text Solution

    |

  5. Determine n if (i) ^2n C2:^n C2=12 :1 (ii) ^2n C3:^n C3=11 :1

    Text Solution

    |

  6. Determine n if (i) ^2n C2:^n C2=12 :1 (ii) ^2n C3:^n C3=11 :1

    Text Solution

    |

  7. Determine n if (i) ^2n C2:^n C2=12 :1 (ii) ^2n C3:^n C3=11 :1

    Text Solution

    |

  8. If .^(15)C(r): .^(15)C(r-1) = 1:5, then find r.

    Text Solution

    |

  9. If .^(n-1)P3 :^(n+1)P3 = 5 : 12, find n.

    Text Solution

    |

  10. If .^(n)P(r) = 720 and .^(n)C(r) = 120, then find r. = (5 xx 4 xx 3...

    Text Solution

    |

  11. If ^(n+1)C(r+1): ^nCr: ^(n-1)C(r-1)=11:6:2 find the values of n and r.

    Text Solution

    |

  12. If .^(n)C(4),.^(n)C(5), .^(n)C(6) are in A.P., then find the value of ...

    Text Solution

    |

  13. If alpha=\ \ ^m C2,\ then find the value of \ ^(alpha)C2dot

    Text Solution

    |

  14. In how many ways can a team of 11 players be selected from 14 players?

    Text Solution

    |

  15. In how many ways 2 persons can be selected from 4 persons?

    Text Solution

    |

  16. In how many ways can a person invites his 2 or more than 2 friends out...

    Text Solution

    |

  17. In how many ways can 11 players be selected from 14 players if (i) a...

    Text Solution

    |

  18. In how many ways can 5 subjects be chosen from 9 subjects if three sub...

    Text Solution

    |

  19. In how many ways can 4 books be chosen from 12 books if (i) there is...

    Text Solution

    |

  20. There are 5 black and 6 red bills in a bag. Find one number of ways in...

    Text Solution

    |