Home
Class 11
MATHS
If .^(16)C(r) = .^(16)C(r+6), then find ...

If `.^(16)C_(r) = .^(16)C_(r+6)`, then find `.^(5)C_(r)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \binom{16}{r} = \binom{16}{r+6} \), we can follow these steps: ### Step 1: Understand the property of binomial coefficients We know that: \[ \binom{n}{r} = \binom{n}{n-r} \] This means that \( \binom{16}{r} = \binom{16}{16-r} \). ### Step 2: Set up the equation From the given equation: \[ \binom{16}{r} = \binom{16}{r+6} \] Using the property of binomial coefficients, we can rewrite the right-hand side: \[ \binom{16}{r+6} = \binom{16}{16 - (r+6)} = \binom{16}{10 - r} \] Thus, we have: \[ \binom{16}{r} = \binom{16}{10 - r} \] ### Step 3: Equate the indices From the equality of the binomial coefficients, we can equate the indices: \[ r = 10 - r \] This simplifies to: \[ 2r = 10 \] So, \[ r = 5 \] ### Step 4: Find \( \binom{5}{r} \) Now that we have \( r = 5 \), we need to find \( \binom{5}{r} \): \[ \binom{5}{5} \] ### Step 5: Calculate \( \binom{5}{5} \) Using the formula for binomial coefficients: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] We can substitute \( n = 5 \) and \( r = 5 \): \[ \binom{5}{5} = \frac{5!}{5! \cdot (5-5)!} = \frac{5!}{5! \cdot 0!} \] Since \( 0! = 1 \): \[ \binom{5}{5} = \frac{5!}{5! \cdot 1} = 1 \] ### Final Answer Thus, the value of \( \binom{5}{r} \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Exercise G|34 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Exercise H|10 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Exercise E|8 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN|Exercise Exercise 4|29 Videos

Similar Questions

Explore conceptually related problems

If ^(15)C_(3r)=^(15)C_(r+3), then find r

If .^(18)C_(r) = .^(18)C_(r+1) , then evaluate .^(r)C_(5) .

If .^(15)C_(r): .^(15)C_(r-1) = 1:5 , then find r.

If .^(15)C_(3r)=.^(15)C_(r+3), find .^(r)C_(2) .

(i) If .^(20)C_(r)=.^(20)C_(r+6) , find r. (ii) If .^(18)C_(r)=.^(18)C_(r+2) , find .^(r)C_(5) .

If ""^(15)C_(3r) = ""^(15)C_(r+3) , find r.

If ""^(12)C_(5) =^(12)C_(r) then r=_____

(i) If .^(n)C_(18)=.^(n)C_(12) then find the value of .^(32)C_(n) . (ii) If .^(10)C_(r)=.^(10)C_(r+4) then find the value of .^(5)C_(r) .

If ^(16)C_(r)=^(16)C_(r+2),f in d^(r)C_(4)

NAGEEN PRAKASHAN-PERMUTATION AND COMBINATION -Exercise F
  1. If .^(18)C(r) = .^(18)C(r+1), then evaluate .^(r)C(5).

    Text Solution

    |

  2. If .^(n)C(5) = .^(n)C(7), then find .^(n)P(3)

    Text Solution

    |

  3. If .^(16)C(r) = .^(16)C(r+6), then find .^(5)C(r).

    Text Solution

    |

  4. Determine n if (i) ^2n C2:^n C2=12 :1 (ii) ^2n C3:^n C3=11 :1

    Text Solution

    |

  5. Determine n if (i) ^2n C2:^n C2=12 :1 (ii) ^2n C3:^n C3=11 :1

    Text Solution

    |

  6. Determine n if (i) ^2n C2:^n C2=12 :1 (ii) ^2n C3:^n C3=11 :1

    Text Solution

    |

  7. If .^(15)C(r): .^(15)C(r-1) = 1:5, then find r.

    Text Solution

    |

  8. If .^(n-1)P3 :^(n+1)P3 = 5 : 12, find n.

    Text Solution

    |

  9. If .^(n)P(r) = 720 and .^(n)C(r) = 120, then find r. = (5 xx 4 xx 3...

    Text Solution

    |

  10. If ^(n+1)C(r+1): ^nCr: ^(n-1)C(r-1)=11:6:2 find the values of n and r.

    Text Solution

    |

  11. If .^(n)C(4),.^(n)C(5), .^(n)C(6) are in A.P., then find the value of ...

    Text Solution

    |

  12. If alpha=\ \ ^m C2,\ then find the value of \ ^(alpha)C2dot

    Text Solution

    |

  13. In how many ways can a team of 11 players be selected from 14 players?

    Text Solution

    |

  14. In how many ways 2 persons can be selected from 4 persons?

    Text Solution

    |

  15. In how many ways can a person invites his 2 or more than 2 friends out...

    Text Solution

    |

  16. In how many ways can 11 players be selected from 14 players if (i) a...

    Text Solution

    |

  17. In how many ways can 5 subjects be chosen from 9 subjects if three sub...

    Text Solution

    |

  18. In how many ways can 4 books be chosen from 12 books if (i) there is...

    Text Solution

    |

  19. There are 5 black and 6 red bills in a bag. Find one number of ways in...

    Text Solution

    |

  20. In 25 cricket players, there are 10 batsmen, 9 bowlers, 4 all-rounders...

    Text Solution

    |