Home
Class 11
MATHS
(x+(1)/(x))^(6)...

`(x+(1)/(x))^(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((x + \frac{1}{x})^6\) using the Binomial Theorem, we follow these steps: ### Step 1: Identify A, B, and n In the expression \((A + B)^n\), we identify: - \(A = x\) - \(B = \frac{1}{x}\) - \(n = 6\) ### Step 2: Write the Binomial Expansion Formula The Binomial Theorem states that: \[ (A + B)^n = \sum_{k=0}^{n} \binom{n}{k} A^{n-k} B^k \] where \(\binom{n}{k}\) is the binomial coefficient. ### Step 3: Apply the Formula Using the identified values, we can expand: \[ (x + \frac{1}{x})^6 = \sum_{k=0}^{6} \binom{6}{k} x^{6-k} \left(\frac{1}{x}\right)^k \] ### Step 4: Simplify Each Term Now we compute each term in the expansion: - For \(k = 0\): \(\binom{6}{0} x^{6-0} \left(\frac{1}{x}\right)^0 = 1 \cdot x^6 = x^6\) - For \(k = 1\): \(\binom{6}{1} x^{6-1} \left(\frac{1}{x}\right)^1 = 6 \cdot x^5 \cdot \frac{1}{x} = 6x^5\) - For \(k = 2\): \(\binom{6}{2} x^{6-2} \left(\frac{1}{x}\right)^2 = 15 \cdot x^4 \cdot \frac{1}{x^2} = 15x^4\) - For \(k = 3\): \(\binom{6}{3} x^{6-3} \left(\frac{1}{x}\right)^3 = 20 \cdot x^3 \cdot \frac{1}{x^3} = 20\) - For \(k = 4\): \(\binom{6}{4} x^{6-4} \left(\frac{1}{x}\right)^4 = 15 \cdot x^2 \cdot \frac{1}{x^4} = \frac{15}{x^2}\) - For \(k = 5\): \(\binom{6}{5} x^{6-5} \left(\frac{1}{x}\right)^5 = 6 \cdot x^1 \cdot \frac{1}{x^5} = \frac{6}{x^4}\) - For \(k = 6\): \(\binom{6}{6} x^{6-6} \left(\frac{1}{x}\right)^6 = 1 \cdot 1 \cdot \frac{1}{x^6} = \frac{1}{x^6}\) ### Step 5: Combine All Terms Now we combine all the terms: \[ (x + \frac{1}{x})^6 = x^6 + 6x^5 + 15x^4 + 20 + \frac{15}{x^2} + \frac{6}{x^4} + \frac{1}{x^6} \] ### Final Result Thus, the expansion of \((x + \frac{1}{x})^6\) is: \[ x^6 + 6x^5 + 15x^4 + 20 + \frac{15}{x^2} + \frac{6}{x^4} + \frac{1}{x^6} \]

To expand the expression \((x + \frac{1}{x})^6\) using the Binomial Theorem, we follow these steps: ### Step 1: Identify A, B, and n In the expression \((A + B)^n\), we identify: - \(A = x\) - \(B = \frac{1}{x}\) - \(n = 6\) ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Exericse 8.2|24 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exericse|20 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Exercise 8F|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

If x+ (1)/(x)=3 , then x^(6) + (1)/(x^(6))= ?

If x+(1)/(x)=3, then x^(6)+(1)/(x^(6))=927(b)414 (c) 364 (d) 322

Find the products: (x^(3)+1)(x^(6)-x^(3)+1)

If x+(1)/(x)=a then prove that x^(6)+(1)/(x^(6)) =a^(6)-6a^(4) +9a^(2)-2 .

Evaluate : int_(0)^(1) (x^(2))/(1+x^(6)) dx