Home
Class 11
MATHS
If the straight line Ix + my + n = 0 tou...

If the straight line `Ix + my + n = 0` touches the:(i) circle `x^2 + y^2=a^2` , show that, `a^2(l^2+m^2) = n^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight line lx+my+n=0 touches the : circle x^(2)+y^(2)=a^(2) , show that a^(2)(l^(2)+m^(2))=n^(2)

Show that the straight line 3x + 4y = 20 touches the circle x ^2 + y ^2 = 16.

If the straight line lx+my+n=0 touches the : circle x^(2)+y^(2)+2agx+2fy+c=0 show that, (l^(2)+m^(2))(g^(2)+f^(2)-c)= (gl+ fm-n)^(2)

If the line l x+m y+n=0 touches the circle x^2+y^2=a^2 , then prove that (l^2+m^2)a^2=n^2dot

If the line lx+my+n=0 touches the circle x^(2)+y^(2)=a^(2), then prove that (l^(2)+m^(2))^(2)=n^(2)

If the straight line lx+my+n=0 touches the : hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , show that a^(2) l^(2)-b^(2)m^(2)=n^(2) .

If the straight line lx+my+n=0 touches the : parabola y^(2)=4ax , prove that am^(2)=nl

If the line l x+m y-1=0 touches the circle x^2+y^2=a^2 , then prove that (l , m) lies on a circle.

If the line l x+m y-1=0 touches the circle x^2+y^2=a^2 , then prove that (l , m) lies on a circle.