Home
Class 11
MATHS
Let F(x)=f(x)g(x)h(x) for all real x ,w...

Let `F(x)=f(x)g(x)h(x)` for all real `x ,w h e r ef(x),g(x),a n dh(x)` are differentiable functions. At some point `x_0,F^(prime)(x_0)=21 F(x_0),f^(prime)(x_0)=4f(x_0),g^(prime)(x_0)=-7g(x_0),` and `h^(prime)(x_0)=kh(x_0)`. Then k is________

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)>0 and g(x)>0 with f(x)>g(x)AA x in R are differentiable functions satisfying the conditions (i) f(0)=2,g(0)=1 , (ii) f'(x)=g(x) , (iii) g'(x)=f(x) then

Let the function f satisfies f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) foe all x and f(0)=3 The value of f(x).f^(prime)(-x)=f(-x).f^(prime)(x) for all x, is

If both f(x)&g(x) are differentiable functions at x=x_(0) then the function defiend as h(x)=Maximum{f(x),g(x)}

Let f(x)=e^(x)g(x),g(0)=4 and g'(0)=2, then f'(0) equals

Let f(x) and g(x) be defined and differntiable for all x ge x_0 and f(x_0)=g(x_0) f(x) ge (x) for x gt x_0 then

Let g(x)=2f((x)/(2))+f(1-x) and f'(x)<0 in 0<=x<=1 then g(x)

If f(x),g(x)a n dh(x) are three polynomials of degree 2, then prove that varphi(x)=|f(x)g(x)h(x)f^(prime)(x)g^(prime)(x)h^(prime)(x)f^(x)g^(x)h^(x)|i sacon s t a n tpol y nom i a l

Let f be a twice differentiable function such that f''(x)=-f(x)" and "f'(x)=g(x)."If "h'(x)=[f(x)]^(2)+[g(x)]^(2), h(a)=8" and "h(0)=2," then "h(2)=

If f,g,a n dh are differentiable functions of xa n d(x)=|fgh(xf)'(xg)'(x h)'(x^(f2)f)' '(x^2g)' '(x^2h)' '| prove that ^(prime)=|fgff'g' h '(x^3f' ')'(x^3g' ')'(x^3h ' ')'|