Home
Class 12
MATHS
log(cot^(-1)x)...

log(cot^(-1)x)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr oo)(|x^(2)|+x)log(x cot^(-1)x) is :

f(x)=e^(ln cot),g(x)=cot^(-1)x

The value of lim_(x rarr oo)x^(2)ln(x cot^(-1)x) is

The domain of f(x)=log_(2)log_(3)log_((4)/(pi))(cot^(-1)x)^(-1) is

underset(xtooo)lim(cot^(-1)(x^(-a)log_(a)x))/(sec^(-1)(a^(x)log_(x)a)),(agt1), is equal to

lim_(x rarr oo)(cot^(-1)(x^(-a)log_(a)x))/(sec^(-1)(a^(x)log_(x)a)),(a>1) is equal to (a)2(b)1(c)(log)_(a)2(d)0

int((x^(2)+1)dx)/((x^(4)-x^(2)+1)cot^(-1)(x-(1)/(x))) is : (where C is arbitrary constant) (Multiple Correct Type) 1) ln|cot^(-1)(x-(1)/(x))|+C 2) -ln|cot^(-1)(x-(1)/(x))|+C 3) ln|tan^(-1)((1)/(x)-x)|+C 4) -ln|tan^(-1)((1)/(x)-x)|+C

log_(e)sin^(-1)x^(2)(cot^(-1)x^(2))

int(1)/(1-cos x-sin x)dx=log|1+(cot x)/(2)|+C(b)log|1-(tan x)/(2)|+C (c) log|1-(cot x)/(2)|+C(d)log|1+(tan x)/(2)|+C