Home
Class 11
MATHS
f(x)=|x-1|...

f(x)=|x-1|

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=||x-1|-1| is not differentiable at x=

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=1/(f(x))

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=-1/(f(x))

If f(x)=(x-1)/(x+1), then show that f((1)/(x))=-f(x) (ii) f(-(1)/(x))=(1)/(f(x))

If f(x)=(x-1)/(x+1) then show that f(1/x)=-f(x) and f(-1/x)=(-1)/f(x)

Consider the function f(x)=(x-1)/(x+1) What (f(x)+1)/(f(x)-1) equal to ?

If f(x)=(x-1)/(x+1), then f(f(ax)) in terms of f(x) is equal to (a) (f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1))(c)(f(x)-1)/(a(f(x)+1))(d)(f(x)+1)/(a(f(x)+1))