Home
Class 11
MATHS
int(tan x+log(sec x))*e^(x)dx=...

int(tan x+log(sec x))*e^(x)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(x log a) e^(x)dx=

int e^x (tan x + log sec x)dx is equal to :

int(1+tan x)/(x+ log sec x)dx =

2. int(tan x)/(log sec x)dx

int e^(x)(tan x-log(cos x))dx=

int sin x log(sec x+tan x)dx=f(x)+x+c , then (f(x) =

int (tan x)/(log (cos x))dx

The value of int (tan (log x))/(x)dx is-

Evaluate: int e^(x)(tan x+log sec x)dx

Evaluate: int(1+tan x)/(x+log sec x)dx