Home
Class 11
MATHS
sin(cos(tan sqrt(x)))...

sin(cos(tan sqrt(x)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x+cos x=(sqrt(7))/(2) where x in[0,(pi)/(4)] then tan((x)/(2)) is equal to

If I=int(sqrt(cot x)-sqrt(tan x))dx, then I equal sqrt(2)log(sqrt(tan x)-sqrt(cot x))+Csqrt(2)log|sin x|cos x+sqrt(sin2x)|+Csqrt(2)log|sin x-cos x+sqrt(2)sin x cos x|+sqrt(2)log|sin(x+(pi)/(4))+sqrt(2)sin x cos x|+C

If (sin A)/(sin B)=(sqrt(3))/(2) and (cos A)/(cos B)=(sqrt(5))/(2) then tan A+tan B is equal to

int(sqrt(Tan x)+sqrt(cot x))dx=sqrt(K)sin^(-1)(sin x-cos x)+c where k is equal to

int(2sin x)/((3+sin2x))dx is equal to (1)/(2)ln|(2+sin x-cos x)/(2-sin x+cos x)|-(1)/(sqrt(2))tan^(-1)((sin x+cos x)/(sqrt(2)))+c(1)/(2)ln|(2+sin x-cos x)/(2-sin x+cos x)|-(1)/(2sqrt(2))tan^(-1)((sin x+cos x)/(sqrt(2)))+c(1)/(4)ln|(2+sin x-cos x)/(2-sin x+cos x)|-(1)/(sqrt(2))tan^(-1)((sin x+cos x)/(sqrt(2)))+cnone of these

Let g(x)=sqrt(sin^(-1)(cos(tan^(-1)x))+cos^(-1)(sin(cot^(-1)x))) ,then int_(-sqrt((pi)/(2)))^(sqrt((pi)/(2)))g(x)dx equals

If tan A=sqrt(2)-1 show that sin A cos A=(sqrt(2))/(4)

The expression (1)/(sqrt(2)){(sin tan^(-1)cos tan^(-1)t)/(cos tan^(-1)sin cot^(-1)sqrt(2)t)}*{sqrt((1+2t^(2))/(2+t^(2)))}