Home
Class 12
MATHS
The value of sum(n=0)^(1947) 1/(2^(n)...

The value of
`sum_(n=0)^(1947) 1/(2^(n)+sqrt(2^(1947)))`
is equal to

A

`487/(sqrt(2^(1945)))`

B

`1946/(sqrt(2^(1947)))`

C

`1947/(sqrt(2^(1947)))`

D

`1948/(sqrt(2^(1947)))`

Text Solution

Verified by Experts

The correct Answer is:
A

`underset(n=0)overset(1947)sum1/(2^(n)+sqrt(2^(1947)))" Total terms "=1948`
`T_(1)=1/(1+sqrt(2^(1947)))`
`T_(1948)=1/(2^(1947)+sqrt(2^(1947)))`
`T_(1)+T_(1948)=1/(sqrt(2^(1947)))`
Similarly, `T_(2)+T_(1947)=1/(sqrt(2^(1947)))=T_(3)+T_(1946)=" and so an".........`
`" Total"1948/2=974" pairs"`
`:." Sum"=974/sqrt(2^(1947))=974/(sqrt(4xx2^(1945)))=487/(sqrt(2^(1945)))`
Promotional Banner

Topper's Solved these Questions

  • KVPY

    KVPY PREVIOUS YEAR|Exercise Matematics|20 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise Part 1 Mathematics|45 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART-2 MATHMATICS|10 Videos
  • KVPY 2021

    KVPY PREVIOUS YEAR|Exercise PART II MATHEMATICS|4 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(n=0)^(10)i^(n) equals

The value of sum_(n=1)^(oo)(1)/(2n(2n+1)) is equal to

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

The value of sum_(n=1)^(oo)(1)/((3n-2)(3n+1)) is equal to (p)/(q), where p and q are relatively prime natural numbers.Then the value of (p^(2)+q^(2)) is equal to

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

Value of sum_(r=0)^(2n)r*(""^(2n)C_(r))*(1)/((r+2)) is equal to :

The value of the sum_(n=0)^(oo)(2n+3)/(3^(n)) is equal to

The value of sum_(r=1)^(n)(sum_(p=0)^(n)nC_(r)^(r)C_(p)2^(p)) is equal to