Home
Class 12
MATHS
sin[cot^(-1){tan(cos^(-1)x}]=x...

sin[cot^(-1){tan(cos^(-1)x}]=x

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sin[cot^(-1){tan(cos^(-1)x)}]

sin[cot^(-1) {tan(cos^(-1)x)}] is equal to

Prove that: sin[cot^(-1){cos(tan^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))cos[tan^(^^)(-1){sin(cot^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))

sin[cot^(-1){cos(tan^(-1)x)}]=

If A=sin[cot^(-1){cos(tan^(-1)x)}], then

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

The value of sin[cot^(-1){cos(tan^(-1) x)}] is

The value of sin[cot^(-1){cos(tan^(-1) x)}] is