Home
Class 12
MATHS
" If "int(0)^(1)(e^(t))/(1+t)dt=a," then...

" If "int_(0)^(1)(e^(t))/(1+t)dt=a," then "int_(0)^(1)(e^(t))/((1+t)^(2))dt" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If k=int_(0)^(1) (e^(t))/(1+t)dt , then int_(0)^(1) e^(t)log_(e )(1+t)dt is equal to

If int_(0)^(1)(e^(t))/(t+1)dt=a, then int_(b-1)^(b)(e^(-t))/(t-b-1)dt=

If A = int_(0)^(1) (e^(t))/(1+ t)dt then int_(0)^(1) e^(t) ln (1 + t) dt=

If int_(0)^(1)(e^(t))/(1+t)dt=a, then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a

If lambda=int_(0)^(1)(e^(t))/(1+t), then int_(0)^(1)e^(t)log_(e)(1+t)dt is equal to

If int_(0)^(1)(e^(t))/(1+t)dt=a then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a .

If rArr int_(0)^(1) (e^(-t))/(t+1) dt =a, "then"int_(b-1)^(b) (e^(-1))/(t-b-1)dt is equal to

If b=int_(0)^(1) (e^(t))/(t+1)dt , then int_(a-1)^(a) (e^(-t))/(t-a-1) is

If int_(0)^(1)(e^(t)dt)/(t+1)=a , then int_(b-1)^(b)(e^(-t)dt)/(t-b-1) is equal to a) ae^(-b) b) -ae^(-b) c) be^(-b) d)None of these