Home
Class 11
MATHS
If y=(sinx)^(tanx),t h e n(dy)/(dx)= ...

If `y=(sinx)^(tanx),t h e n(dy)/(dx)=` (a)`(sinx)^(tanx)(1+sec^2xlogsinx)` (b)`tanx(sinx)^(tanx-1)cosx` (c)`(sinx)^(tanx)` (d)`sec^2xlogsinx` `tanx(sinx)^(tanx-1)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(sinx)^(tanx),then(dy)/(dx) is equal to

If y=(sinx +cosx )^((1+tanx )),then (dy)/(dx) =

y=e^(sinx)+(tanx)^(x)

intdx/(sinx+tanx)

intdx/(sinx+tanx)

y=(sinx)^(tanx)+(cosx)^(secx)

If y=sqrt((1+tanx)/(1-tanx))," then: "(dy)/(dx)=

If y=(tanx+cotx)/(tanx-cotx)," then: "(dy)/(dx)=

y = x^(sinx).(tanx)^(x)

if y=x^2sinx+(3x)/(tanx) , then (dy)/(dx) will be