Home
Class 11
MATHS
If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x...

If `y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2])` and `0 < x < 1,` then find `(dy)/(dx)`

Text Solution

AI Generated Solution

To find the derivative \( \frac{dy}{dx} \) for the function \[ y = \sin^{-1} \left( x \sqrt{1-x} - \sqrt{x} \sqrt{1-x^2} \right) \] we can follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

Find the (dy)/(dx) of y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2))

underset0 If y=cos^(-1){x sqrt(1-x)+sqrt(x)sqrt(1-x^(2))} and

If y=sin^(-1)(x sqrt(1-x)+sqrt(x)sqrt(1-x^(2))) and (dy)/(dx)=(1)/(2sqrt(x(1-x)))+p, then p,

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

(d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

int_(0)^(1)sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))dx

Let f(x)=sin^(-1){xsqrt(1-x)-sqrt(x(1-x^(2))}}, AA 0le xle1 then f(x) is

If y=tan^(-1) [(sqrt(1+sinx)-sqrt(1-sin x))/(sqrt(1+sin x)+sqrt(1-sin x)]] where 0 lt x lt pi/2 find (dy)/(dx)

If y=tan^(-1){(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))} , -1 < x < 1, x!= 0 . Find dy/dx .