Home
Class 12
MATHS
" If "z(1)=-1" and "z(2)=i," then find "...

" If "z_(1)=-1" and "z_(2)=i," then find "Arg((z_(1))/(z_(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If z _(1) =- 1, z _(2) = i, then find Arg ((z _(1))/( z _(2))).

If z_(1)=-1,z_(2)=i then find Arg ((z_(1))/(z_(2)))

If z_(1)=1+i, z_(2)=sqrt(3)+i, then arg ((z_(1))/(z_(2)))^(50)=

If Z_(1)=-1,Z_(2)=-i then find Arg(Z_(1).Z_(2))

If z_(1)=1+i,z_(2)=sqrt(3)+i then arg((z_(1))/(z_(2)))^(50) is

If z_(1)=(sqrt3-1)+(sqrt3+1)i and z_(2)=-sqrt3+i" ""find" " "arg z_(1) and argz_(2), hence, calculate arg(z_(1)z_(2)).

If z_(1)=1+isqrt3and z_(2)=sqrt3-i, show that arg(z_(1)z_(2))=argz_(1)+argz_(2)

Let z _(1) = 1 + i sqrt3 and z _(2) = 1 + i, then arg ((z _(1))/( z _(2))) is

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find z_(1)+z_(2) .

If z_(1), and z_(2) are the two complex numbers such that|z_(1)|=|z_(2)|+|z_(1)-z_(2)| then find arg(z_(1))-arg(z_(2))