Home
Class 12
MATHS
" (ii) "(cos x)/(sqrt((1)/(4)-cos^(2)x))...

" (ii) "(cos x)/(sqrt((1)/(4)-cos^(2)x))

Promotional Banner

Similar Questions

Explore conceptually related problems

(i) int(2cos x)/(sqrt(1-4cos^(2) x))dx " "(ii) int (x+1)/(sqrt(x^(2)+1))dx

(i) int(2cos x)/(sqrt(1-4cos^(2) x))dx " "(ii) int (x+1)/(sqrt(x^(2)+1))dx

Evaluate : (i) intsinxsqrt(1-cos2x)dx (ii) int(cos2x)/(sqrt(1+cos4x))dx

Solve the equation: (4sqrt((cos x)/(2))-5-(sqrt(2))/(2))^(2)+sqrt(2)(4sqrt((cos x)/(2))-5-(sqrt(2))/(2))-(cos x)/(2)=0

Prove that: (i)tan^(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=(pi)/(4)+(x)/(2)

Prove that: tan^(^^)(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=pi/4-x/2, if pi

tan ^(-1) ""{(sqrt(1+cos x)+sqrt(1-cos x)}/{sqrt(1+cosx)-sqrt(1-cos x)}}=(pi)/(4)+(x)/(2) , 0 lt x lt (pi)/(2)

tan^(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}

Simplest form of tan^(-1)((sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))), pi lt x lt (3 pi)/(2) is: