Home
Class 9
MATHS
" (1) "TF(3^(5x)times81^(2)times6561-3^(...

" (1) "TF(3^(5x)times81^(2)times6561-3^(7)" then "x=?)/(3^(2x))

Promotional Banner

Similar Questions

Explore conceptually related problems

(3^(5x)xx81^(2)xx6561)/(3^(2x))=3^(7), then x=

If (3^(5x)*(81)^(2)*6561)/(3^(2x))=3^(7) then x=

If (3^(5x)xx81^2xx6561)/(3^(2x))=3^7 , then x=

If (3^(5x)x81^(2)x6561)/(3^(2x))=3^(7), then x=3 (b) -3(c)(1)/(3)(d)-(1)/(3)

If (3^(5x)xx(81)^(2)xx6561)/(3^(2x))=3^(7) , then x =_______

If (3^(5x)\ xx\ 81^2\ xx\ \ 6561)/(3^(2x))=3^7, then x= (a)\ 3 (b) -3 (c) 1/3 (d) -1/3

((64)/(27))^((2)/(3))times((9)/(16))^((3)/(2))times((81)/(256))^((3)/(4))=((3)/(4))^(x) then x=

[((-2)/(-3))times(1)/(5)]times((-2)/(7))=((-2)/(-3))times[(1)/(5)times((-2)/(7))]

Evaluate : (5/7)^3 times ( 5/7 )^(-6) times ( 1/3 )^(-2 ) times ( 3/5 )^-2

Find the value of x in each of the following . (i) root5(5x + 2) = 2 (ii) root3(3x - 2) =4 (iii) ((3)/(4))^(3)((4)/(3))^(-7)= ((3)/(4))^(2x) (iv) 5^(x-3) xx 3^(2x -8) = 225 (v) (3^(3x) . 3^(2x))/(3^(x)) = root4(3^(20))