Home
Class 12
MATHS
lim(x rarr e^(+))(ln x)^((1)/(x-e))" is ...

lim_(x rarr e^(+))(ln x)^((1)/(x-e))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (x rarr e ^ (+)) (ln x) ^ (xe)

lim_ (x rarr e) (ln x-1) / (xe)

lim_(x rarr e)(log x-1)/(x-e)=(1)/(e)

the value of lim_(x rarr e)(log x-1)/(x-e) equals to

lim_ (x rarr e) (ln x) ^ ((1) / (ln ((e) / (x))))

If lim_(x rarr0)[1+x+(f(x))/(x)]^((1)/(x))=e^(3), then the value of ln(lim_(x rarr0)[1+(f(x))/(x)]^((1)/(x))) is

lim_(x rarr0)(1+x)^((1)/(x))=e

Find the value of lim_(x rarr e)(log_(e)x)/(x-e)

Evaluate lim_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(x))+1),x!=0

lim_(x rarr0)((e^(x)-x-1)/(x))