Home
Class 11
MATHS
(lim)(hvec0)((e+h)^(1n(e+h))-e)/hi s...

`(lim)_(hvec0)((e+h)^(1n(e+h))-e)/hi s____`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (h rarr0) (e ^ (tanh-1)) / (h)

If u=(d)/(dx)(e^(sinx)),v=lim_(hrarr0) (e^(sin(x+h))-e^(sinx))/(h) and w=inte^(sinx)cosxdx, then

The value of ("lim")_(xvec0)[1/n+(e^(1/n))/n+(e^(2/n))/n++(e^((n-1)/n))/n]i s 1 (b) 0 (c) e-1 (d) e+1

If l_(1)=(d)/(dx)(e^(sinx)) l_(2)lim_(hto0) (e^(sin(x+h))-e^(sinx))/(h) l_(3)=inte^(sinx)cosxdx then which one of the following is correct?

lim_(h rarr0)(e^((x+h)^(2))-e^(x^(2)))/(h)

l_(1)=(d)/(dx)(e^(tanx)) l_(2)=lim_(h to 0)(e^(sin(x+h)-e^(sinx)))/(h) l_(3)=inte^(sinx)cosxdx , then which one of the following is correct ?

("lim")_(xvecoo)[(e/(1-e))(1/e-x/(1+x))]^xi s e^((1-e)) (b) e^(((1-e)/e)) (c) e^((e/(1-e))) (d) e^(((1+e)/e))

lim_(h rarr0^(-))((2e^(-1/h)-3)/(1-3e^(-1/h))) is

lim_ (h rarr0) (e ^ (2x + 2h) -e ^ (2x)) / (h) =

("lim")_(xvec1)[cos e c(pix)/2]^(1/((1-x)))(w h e r e[dot]r e p r e s e n t st h e gif is e q u a l to (a) 0 (b) 1 (c) oo (d) does not exist