Home
Class 11
MATHS
Prove that: sin^2(n+1)A-sin^2n A="sin"(2...

Prove that: `sin^2(n+1)A-sin^2n A="sin"(2n+1)A s in A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^2(n+1)A-sin^2n A="sin"(2n+1)Asin A

Prove that: sin^(2)(n+1)A-sin^(2)nA=sin(2n+1)As in A

Prove that sin^2(n+1)A-sin^2nA=sin(2n+1)AsinA

Prove that: sin(n+1)A sin(n+2)A+cos(n+1)A cos(n+2)A=cos A

sin(2n+1)A*sin A=sin^(2)(n+1)A-sin^(2)(nA)

Prove that: sin(n+1)As in(n+2)A+cos(+1)A cos(n+2)A=cos A

Prove that: sin (n + 1) x sin (n + 2)x + cos (n + 1) x cos (n + 2) x = cos x

Prove that: s in x+s in3x++sin(2n-1)x=(sin^(2)nx)/(s in x) for all n in N.

Prove that: sin(n+1)x sin(n+2)x+cos(n+1)x cos(n+2)x=c

Prove that: \ sin x+sin3x++sin(2n-1)x=(sin^2\ \ n x)/(sin x) for all n in NN