Home
Class 14
MATHS
" (c) "p-2q-p^(2)+4q^(2)...

" (c) "p-2q-p^(2)+4q^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If AM and GM of x and y are in the ratio p: q, then x: y is : a) p - sqrt(p^(2)+ q^(2)) : p +sqrt (p^(2)+ q^(2)) b) p +sqrt(p^(2) - q^ (2) ) : p- sqrt(p^(2)-q^(2)) c) p : q d) p + sqrt(p^(2) + q^(2)) : p-sqrt(p^(2) + q^(2))

sin alpha =(2pq)/(p^2+q^2) => sec alpha - tan alpha= .......... A) (p-q)/(p+q) B) (pq)/(p^(2) +q^(2)) C) (p+q)/(p-q) D) (pq)/(P+q)

If the difference of the roots of x^(2)-px+q=0 is unity,then p^(2)+4q=1b .p^(2)-4q=1c*p^(2)+4q^(2)=(1+2q)^(2)d4p^(2)+q^(2)=(1+2p)^(2)

If sec alpha and cosec alpha are the roots of the equation x^(2)-px+q=0 , then a) p^(2)=p+2q b) q^(2)=p+2q c) p^(2)=q(q+2) d) q^(2)=p(p+2)

Factorise p ^(4) + q ^(4) + p ^(2) q ^(2).

Show that the sequence (p + q)^(2), (p^(2) + q^(2)), (p-q)^(2) … is an A.P.

Show that the sequence (p + q)^(2), (p^(2) + q^(2)), (p-q)^(2) … is an A.P.

Sum the following infinite series (p-q) (p+q) + (1)/(2!) (p-q)(p+q) (p^(2) + q^(2))+(1)/(3!) (p-q) (p+q) (p^(4)+q^(4)+p^(2) q^(2)) + ...oo

Sum the following infinite series (p-q) (p+q) + (1)/(2!) (p-q)(p+q) (p^(2) + q^(2))+(1)/(3!) (p-q) (p+q) (p^(4)+q^(4)+p^(2) q^(2)) + ...oo

If the difference of the roots of the equation,x^(2)+px+q=0 be unity,then (p^(2)+4q^(2)) equals to: (1+1q)^(2) b.(1-2q)^(2) c.4(p-q)^(2) d.2(p-q)^(2)