Home
Class 12
MATHS
" If "lim(x rarr2)(f(x)-f(2))/(x-2)" exi...

" If "lim_(x rarr2)(f(x)-f(2))/(x-2)" exists,then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_( xto 2 ) (f(x) -f(2))/( x-2) exist ,then

If lim_(x rarr a)((f(x))/(g(x))) exists,then

If (lim)_(x rarr c)(f(x)-f(c))/(x-c) exists finitely,write the value of (lim)_(x rarr c)f(x)

1.if lim_(x rarr a)f(x) and lim_(x rarr a)g(x) both exist,then lim_(x rarr a){f(x)g(x)} exists.2. If lim_(x rarr a){f(x)g(x)} exists,then both lim_(x rarr a)f(x) and lim_(x rarr a)g(x) exist.Which of the above statements is/are correct?

If f(2)=2 and f'(2)=1, then find lim_(x rarr2)(xf(2)-2f(x))/(x-2)

If lim_(x rarr a)[f(x)g(x)] exists,then both lim_(x rarr a)f(x) and lim_(x rarr a)g(x) exist.

Let f(2)=4 and f'(2)=4. Then lim_(x rarr2)(xf(2)-2f(x))/(x-2) is equal to

Evaluate: lim_(x rarr 2)(f(x)-f(2))/(x-2), "where" f(x)=x^(2)-4x

Let f: R rarr R be a function such that f(2)=4 and f'(2)=1 . Then, the value of lim_(x rarr 2) (x^(2)f(2)-4f(x))/(x-2) is equal to

LEt f(x) be a differentiable function and f'(4)=5. Then,lim_(x rarr2)(f(4)-f(x^(2)))/(x-2) equals