Home
Class 11
MATHS
If e^y(x+1)=1,Then(d^2y)/(dx^2)=...

If `e^y(x+1)=1`,Then`(d^2y)/(dx^2)`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(x + y) = y^2 then (d^2y)/(dx^2) at ( -1, 1 ) is equal to :

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

y=x+e^(x), then (d^(2)y)/(dx^(2))=

If e^y(x+1)=1 . Show that (d^2y)/(dx^2)=((dy)/(dx))^2

If x^(2)+y^(2) =1,then (d^(2)y)/(dx^(2)) =

Let y=e^(2x)dot Then((d^(2)y)/(dx^(2)))((d^(2)x)/(dy^(2)))is(A)1(B)e^(-2x)(C)2e^(-2x)

If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

If y=x^(m)e^(nx) then (d^(2)y)/(dx^(2)) is

If e^(y)(x+1)=1 ,show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2) If y=sin(2sin^(-1)x), show that ((1-x^(2))d^(2y))/(dx^(2))=x(dy)/(dx)-4y