Home
Class 12
MATHS
log[tan((x)/(2))]...

log[tan((x)/(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If int[1+2tan x(tan x+sec x)]^(1/2)dx=lambda log|(tan((x)/(2)+k))/(cos x)|+C then lambda K is equal to where 0 < x < (pi)/(2)

int(tan(ln x)tan(ln((x)/(2)))tan(ln2))/(x)dx

Differentiate log tan((pi)/(4)+(x)/(2)) with respect to x:

(d)/(dx)(log tan((pi)/(4)+(x)/(2)))=

(d)/(dx)(log tan((pi)/(4)+(x)/(2)))=

log(sec.(x)/(2)+tan.(x)/(2))

Find dy/dx : y = log[tan^5(2-3x)]

intdx/(cosx-sinx) is equal to (A) 1/sqrt(2)log|tan(x/2-(3x)/8)|+C (B) 1/sqrt(2)log|cot(x/2)|+C (C) 1/sqrt(2)log|tan(x/2-pi/6)|+C (D) 1/sqrt(2)log|tan(x/2+(3pi)/8)|+C

If y=log[tan(pi/4 +x/2)]) ,then (dy)/(dx) is