Home
Class 11
MATHS
Tangents are drawn to the ellipse (x^2)/...

Tangents are drawn to the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1,(a > b),` and the circle `x^2+y^2=a^2` at the points where a common ordinate cuts them (on the same side of the x-axis). Then the greatest acute angle between these tangents is given by (A) `tan^(-1)((a-b)/(2sqrt(a b)))` (B) `tan^(-1)((a+b)/(2sqrt(a b)))` (C) `tan^(-1)((2a b)/(sqrt(a-b)))` (D) `tan^(-1)((2a b)/(sqrt(a+b)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the ellipse x^2/a^2 + y^2/b^2 = 1 and the circle x^2 + y^2 = ab intersect at an angle tan^(-1) (|a-b|/sqrt(ab)) .

Tangents are drawn to the ellipse (x^(2))/(a^(2)) +(y^(2))/( b^(2)) =a+ b at the points where it is cut by the line (x)/(a^(2)) cos theta - ( y)/(b^(2)) sin theta =1 , then the point of intersection of Tangents

2Tan^(-1)((sqrt(a-b))/(a+b)"tan"x/2)=

int(1)/(a^(2)-b^(2)cos^(2)x)dx(a>b)=(1)/(a sqrt(a^(2)-b^(2)))tan^(-1)[(a tan x)/(sqrt(a^(2)-b^(2)))]+c

If sqrt(3) b x+a y=2 a b is a tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then the eccentric angle of the point is

(d )/(dx ) { (2)/( sqrt(a ^(2) - b ^(2))) Tan ^(-1) (( sqrt (a -b ))/( a + b) tan (x )/(2 )) }=

y = tan ^ (- 1) [sqrt ((ab) / (a + b)) (tan x) / (2)]