Home
Class 11
MATHS
Let vec a=a1 hat i+a2 hat j+a2 hat k , ...

Let ` vec a=a_1 hat i+a_2 hat j+a_2 hat k , vec b=b_1 hat i+a_2 hat j+b_2 hat k ,a n d vec c=c_1 hat i+c_2 hat j+c_2 hat k ,` be three non-zero vectors such that ` vec c` is a unit vector perpendicular to both vectors ` vec aa n d vec b` . If the angle between `aa n db` is `pi//6,` then `|a_1a_2a_3b_1b_2b_3c_1c_2c_3|^2` is equal to 0 1 `1/4(a1 2+a2 2+a3 2)(b1 2+b2 2+b3 2)` `3/4(a1 2+a2 2+a3 2)(b1 2+b2 2+b3 2)(c1 2+c2 2+c3 2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a=a_1 hat i+a_2 hat j+a_2 hat k , vec b=b_1 hat i+a_2 hat j+b_2 hat k , and vec c=c_1 hat i+c_2 hat j+c_2 hat k , be three non-zero vectors such that vec c is a unit vector perpendicular to both vectors vec a and vec b . If the angle between a and b is pi//6, then |[a_1,a_2,a_3],[b_1,b_2,b_3],[c_1,c_2,c_3]|^2 is equal to

Let vec a=a_1 hat i+a_2 hat j+a_3 hat k , vec b=b_1 hat i+b_2 hat j+b_3 hat ka n d vec c=c_1 hat i+c_2 hat j+c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec aa n d vec b . If the angle between aa n db is pi/6, then prove that |a_1a_2a_3b_1b_2b_3c_1c_2c_3|=1/4(a1 2+a2 2+a3 2)(b1 2+b2 2+b3 2)

Let vec a=a_1 hat i+a_2 hat j+a_3 hat k , vec b=b_1 hat i+b_2 hat j+b_3 hat ka n d vec c=c_1 hat i+c_2 hat j+c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec aa n d vec b . If the angle between aa n db is pi/6, then prove that |(a_1 a_2a_3)(b_1b_2b_3)(c_1c_2c_3)|=1/4(a1 2+a2 2+a3 2)(b1 2+b2 2+b3 2)

Let vec a = a_1 hat i + a_2 hat j+ a_3 hat k;vec b = b_1 hat i+ b_2 hat j+ b_3 hat k ; vec c= c_1hat i + c_2 hat j+ c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a & vec b. If the angle between vec a and vec b is pi/6 , then |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|^2=

Let vec a = a_1 hat i + a_2 hat j+ a_3 hat k;vec b = b_1 hat i+ b_2 hat j+ b_3 hat k ; vec c= c_1hat i + c_2 hat j+ c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a & vec b . If the angle between vec a and vec b is pi/6 , then |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|^2=

Let vec a = a_1 hat i + a_2 hat j+ a_3 hat k;vec b = b_1 hat i+ b_2 hat j+ b_3 hat k ; vec c= c_1hat i + c_2 hat j+ c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a & vec b . If the angle between vec a and vec b is pi/6 , then |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|^2=

Let vec a=a_1 hat i+a_2 hat j+a_3 hat k , vec b=b_1 hat i+b_2 hat j+b_3 hat k and vec c=c_1 hat i+c_2 hat j+c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a and vec b . If the angle between a and b is pi/6, then prove that |[a_1,a_2,a_3],[b_1,b_2,b_3],[c_1,c_2,c_3]|^2=1/4(a_1 ^2+a_2 ^2+a_3 ^2)(b_1 ^2+b_2 ^2+b_3 ^2)

Let vec a=a_1 hat i+a_2 hat j+a_3 hat k , vec b=b_1 hat i+b_2 hat j+b_3 hat k and vec c=c_1 hat i+c_2 hat j+c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a and vec b . If the angle between a and b is pi/6, then prove that |[a_1,a_2,a_3],[b_1,b_2,b_3],[c_1,c_2,c_3]|^2=1/4(a_1 ^2+a_2 ^2+a_3 ^2)(b_1 ^2+b_2 ^2+b_3 ^2)

Let vec a=a_1 hat i+a_2 hat j+a_3 hat k , vec b=b_1 hat i+b_2 hat j+b_3 hat ka n d vec c=c_1 hat i+c_2 hat j+c_3 hat k be three nonzero vectors such that vec c is a unit vector perpendicular to both vec aa n d vec bdot If the angle between vec aa n d vec b is pi//6 , then the value of |a_1b_1c_1a_2b_2c_2a_3b_3c_3| is a.0 b. 1 c. 1/4(a1 2+a2 2+a3 2)(b1 2+b2 2+b3 2) d. 3/4(a1 2+a2 2+a3 2)(b1 2+b2 2+b3 2)

Let vec a=a_1 hat i+a_2 hat j+a_3 hat k , vec b=b_1 hat i+b_2 hat j+b_3 hat ka n d vec c=c_1 hat i+c_2 hat j+c_3 hat k be three nonzero vectors such that vec c is a unit vector perpendicular to both vec aa n d vec bdot If the angle between vec aa n d vec b is pi//6 , then the value of |a_1b_1c_1a_2b_2c_2a_3b_3c_3| is a. 0 b. 1 c. 1/4(a_1 2+a2 2+a3 2)(b1 2+b2 2+b3 2) d. 3/4(a1 2+a2 2+a3 2)(b1 2+b2 2+b3 2)