Home
Class 11
MATHS
If A, B, C, D are four points in space ...

If `A, B, C, D` are four points in space satisfying `bar(AB).bar(CD)=K [|bar (AD)|^2+|bar (BC)|^2-|AC|^2-|BD|^2]` then the value of K is

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B,C,D are four points in space satisfying bar(AB).bar(CD)=k[|bar(AD)|^(2)+|bar(BC)|^(2)-|bar(AC)|^(2)-|bar(BD)|^(2)] then k =

A,B,C,D are four points in space and |bar(AB) times bar(CD) +bar(BC) times bar(AD)+bar(CA) times bar(BD)|=lamda (area DeltaABC ) then value of lamda is _____

If A,B, C and D are four points, then show that |bar(AB) xx bar(CD) + bar(BC) xx bar(AD) + bar(CA) xx bar(BD)| is four times the area of Delta ABC

If A, B, C and D are four non-collinear points in the plane such that bar(AD)+bar(BD)+bar(CD)=bar(0) , then prove that the points D is the centroid of the triangle ABC.

If A,B,C,D are four point and |bar(AB) xx bar(CD) +bar(BC)xx bar(AD) +bar(CA) xx bar(BD)| = k ("Area of "DeltaABC) , then k =

If A,B,C and D are four points and bar(AB)=bar(DC) then bar(AC)+bar(BD)=(A)2vec AD(B)2vec CB(C)2vec AC(D) none

If ABCD is a square then, 2bar(AB)+4bar(BC)+5bar(CD)+7bar(DA)=

If ABCD is a square, then bar(AB) + 2 bar(BC) + 3 bar(CD) + 4 bar(DA) =

In DeltaABC , if D is the midpoint of BC then prove that bar(AD)=(bar(AB)+bar(AC))/2

If ABCD is a parallelogram such that bar(AB)=bar(a), bar(BC)=bar(b)" then "bar(AC), bar(BD) are