Home
Class 12
MATHS
The value of integral int0^(2008)(3x^2...

The value of integral `int_0^(2008)(3x^2-8028 x+(2007)^2+1/(2008))dx` equals `(2008)^2` b. `(2009)^2` c.`2009` d. 1

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    BANSAL|Exercise All Questions|425 Videos
  • LIMITS AND DERIVATIVES

    BANSAL|Exercise All Questions|436 Videos

Similar Questions

Explore conceptually related problems

x^(2009) xx(1)/(x^(2008))=x

The value of the integral int_(-2)^2|1-x^2|dx is 4 b. 2 c. -2 d. 0

int_(-2008)^(2008)|sin((pi x)/(2008))|backslash dx equals

The value of the definite integral int_(-2008)^(2008)((f'(x)+f'(-x))/((2008)^(x)+1))dx

The value of sqrt(pi(int_(0)^(2008)x| sinpi x| dx)) is equal to

simplify (2^(2009)-2^(2007))/(2^(2006)-2^(2008))

int_(0)^((pi)/2)(2008^(sinx))/(2008^(sinx)+2008^(cosx))dx=

Integrate : int((x+sqrt(1+x^2))^(2009))/(sqrt(1+x^2))dx