Home
Class 12
MATHS
Suppose that the function f, g, f',and g...

Suppose that the function `f, g, f',and g'` are continuous over `[0,1], g(x) !=0` for `x in [0,1], f(0) = 0, g(0) = pi, f(1)=2015/2,g(1)=1`. The value of `int_0^1 (f(x)g'(x)(g^2(x)-1)+f'(x)-g(x)(g^2(x)+1))/(g^2(x))dx ` is equal to

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    BANSAL|Exercise All Questions|425 Videos
  • LIMITS AND DERIVATIVES

    BANSAL|Exercise All Questions|436 Videos

Similar Questions

Explore conceptually related problems

The value of int_1^2 {f(g(x))}^(-1)f'(g(x))g'(x) dx , where g(1)=g(2), is equal to

If g(1)=g(2), then int_(1)^(2)[f{g(x)}]^(-1)f'{g(x)}g'(x)dx is equal to

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to

If f(a)=2,g(a)=-1,f'(a)=1, g'(a)=2 then the value of lim_(x->0) (f(x).g(a)-f(a).g(x))/(x-a)= (a) 5 (b) -5 (c) -6 (d) non of these

If f(x)=e^xg(x), g(0)=2, g'(0)=1 , then f'(0) is equal to.......

Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx . If 6g(2)+1=0 then g(-(1)/(2)) is equal to