Home
Class 12
MATHS
I=int0^(2pi)sin^4x\ dx=kint0^(pi//2)cos^...

`I=int_0^(2pi)sin^4x\ dx=kint_0^(pi//2)cos^4x\ dx\ ` find value of `k ?`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    BANSAL|Exercise All Questions|425 Videos
  • LIMITS AND DERIVATIVES

    BANSAL|Exercise All Questions|436 Videos

Similar Questions

Explore conceptually related problems

int_0^pi sin^4x cos^4x dx

(i) int_0^(pi/2) sin^2 x dx (ii) int_0^(pi//2) cos^2 x dx

int_(0)^(pi)sin 5 x cos 4x dx=

int_(0)^( pi/2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

(i) int_0^(pi//2) sin^2 dx =pi/4 (ii) int_0^(pi//2) cos^2x dx=pi/4 (iii) int_(-pi//4)^(pi//4) sin^2 x dx=pi/4-1/2 (iv) int_(-pi//4)^(pi//4) cos^2x dx=pi/4+1/2