Home
Class 12
MATHS
int0^(pi/4) ln(1+tantheta) d theta...

`int_0^(pi/4) ln(1+tantheta) d theta`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    BANSAL|Exercise All Questions|425 Videos
  • LIMITS AND DERIVATIVES

    BANSAL|Exercise All Questions|436 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi//4) log (1+ tan theta ) d theta is equal to

If int_(0)^( pi/2)log sin xdx=k, then the value of the definite integral int_(0)^( pi/4)log(1+tan theta)d theta( i) -(K)/(8)( ii) -(K)/(4) (iii) (K)/(8) (iv) (K)/(4)

Evaluate int_0^(pi/4)sqrt(1+tan^2theta)d theta.

int_ (0) ^ ((pi) / (4)) ln (1 + tan theta) d theta

STATEMENT 1: int_(0)^((pi)/(4))log(1+tan theta)d theta=(pi)/(8)log2 STATEMENT 2:int_(0)^((pi)/(2))log sin theta d theta=-pi log2

If I=int_0^a (dx)/(sqrt(x+a)+sqrtx)=int_0^(pi/8) (2tantheta)/(sin2theta) d(theta),(where a>0) (A) a=3/4 (B) cot((3pi)/8) (C) tan((3pi)/8) (D) tan(pi/8)

Prove that int_(0)^( pi/2)log(tan theta+cot theta)backslash d theta=pi log2

int_(0)^(pi//8) cos^(3)4 theta d theta=

int _(0)^(pi//4) ( 4 sin 2 theta d theta )/(sin^(4) theta +cos^(4) theta )=