Home
Class 14
MATHS
समीकरण cos^(2)theta=((x+y)^(2))/(4xy) तभ...

समीकरण `cos^(2)theta=((x+y)^(2))/(4xy)` तभी संभव है?

Promotional Banner

Similar Questions

Explore conceptually related problems

If x and y are two positive real numbers (x ne y) , prove that cos^(2) theta = ((x+y)^(2))/(4 xy) is not possible.

sin^(2)theta=((x+y)^(2))/(4xy) where x,y in R gives theta if and only if

sin^(2) theta = ((x+y)^(2))/(4xy) is true if and only if

If "cosec"^(2) theta = (4xy)/((x+y)^(2)) , then

Prove that the relation sin^(2)theta = (x+y)^(2)/4xy is not 4xy possible for any real theta where x in R , y in R such that |x | ne ly| .

If x = acos^(3)theta sin^(2)theta , y = asin^(3)theta cos^(2)theta and (x^(2) + y^(2))^(p)/(xy)^(q)(p,q in N) is independent of theta , then :

If x=a cos^(3) theta sin^(2) theta, y= a sin^(3) theta cos^(2) theta and ((x^(2)+y^(2))^(p))/((xy)^(q))(p, q, in N) is independent of theta , then

If x=a cos^(3) theta sin^(2) theta,y = a sin^(3) theta cos^(2) theta and ((x^(2)+y^(2))^(p))/((xy)^(q))(p,q in N) is independent of theta , the