Home
Class 11
MATHS
If y=sinp xa n dyn is the n t h deriva...

If `y=sinp xa n dy_n` is the `n t h` derivative of `y ,` then `|[y, y_1,y_2],[y_3,y_4,y_5],[y_6,y_7,y_8]|i s` (a)1 (b) 0 (c) `-1` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= cos ax and y_n is n^(th) derivative of y, then |{:(y,y_1,y_2),(y_3,y_4,y_5),(y_6,y_7,y_8):}| is equal to

If y= sin px and y_(n) is the nth derivative of y, then |{:(y,y_(1),y_(2)),(y_(3),y_(4),y_(5)),(y_(6),y_(7),y_(8)):}| is

If y = sin px and y_n is the nth derivative of y , then find the value of |(y, y1, y2), (y3, y4, y5), (y6, y7, y8)|

If y = sin mx then the value of |[y,y_1,y_2],[y_3,y_4,y_5],[y_6,y_5,y_7]| where y shows the order of derivative) is

If y=sinm x , then the value of the determinant |y y_1y_2y_3y_4y_5y_6y_7y_8|,w h e r ey_n=(d^n y)/(dx^n) is m^9 b. m^2 c.m^3 d. none of these

If y=sin mx the value of the determinant |{:(y,y_(1),y_(2)),(y_(3),y_(4),y_(5)),(y_(6),y_(7),y_8):}| where y_(n)=(d^(n)y)/(dx^(n)) is

if y= sin mx, them the value of the determinant |{:(y,,y_(1),,y_(2)),(y_(3),,y_(4),,y_(5)),(y_(6),,y_(7),,y_(8)):}|" Where " y_(n)=(d^(n)y)/(dx^(n)) " is "

If y = cos ax, prove that | (y, y_1, y_2), (y_3, y_4, y_5), (y_6, y_7, y_8) | = 0 where y_r = d ^ r / (dx ^ r) .y

If y^(1/m)=(x+sqrt(1+x^2)),t h e n(1+x^2)y_2+x y_1 is (where y_r represents the r t h derivative of y w.r.t. xdot (a)m^2y (b) m y^2 (c) m^2y^2 (d) none of these