Home
Class 11
MATHS
A function f, defined for all positive ...

A function `f,` defined for all positive real numbers, satisfies the equation `f(x^2)=x^3` for every `x >0` . Then the value of `f^(prime)(4)` is (a)`12 `(b)` 3` (c) `3//2` (d) cannot be determined

Promotional Banner

Similar Questions

Explore conceptually related problems

A function f, defined for all positive real numbers, satisfies the equation f(x^(2))=x^(3)=x^(3) for every gt0. Then the value of f'(4) is

If a differentiable function f defined for x gt0 satisfies the relation f(x^(2))=x^(3),x gt 0 , then what is the value of f'(4)?

If a real valued function f(x) satisfies the equation f(x+y)=f(x)+f(y) for all x,y in R then f(x) is

Let f(x) be a continuous function defined from [0,2]rarr R and satisfying the equation int_(0)^(2)f(x)(x-f(x))dx=(2)/(3) then the value of 2f(1)

The function fis not defined for =0, but for all non zero real number x,f(x)+2f((1)/(x))=3x. The equation f(x)=f(-x) is satisfied by

The function f satisfies the functional equation 3f(x)+2f((x+59)/(x-1))=10x+30 for all real x!=1. The value of f(7)is8(b)4(c)-8 (d) 11

Suppose that the function F is defined for all real numbers r by the formula f(r)=2(r-1)+3 . Evaluate F at the input values 0, 2, x+2 , and f(2) .

A differentiable function satisfies 3f^(2)(x)f'(x)=2x. Given f(2)=1 then the value of f(3) is

Let f be a function satisfying the functional equation f(x)+2f((2x+1)/(x-2))=3x,x!=2 then find the value of |(f(3))/(f(7))|