Home
Class 12
MATHS
cos[(pi)/(6)+cos^(-1)(-(sqrt(3))/(2))]=-...

cos[(pi)/(6)+cos^(-1)(-(sqrt(3))/(2))]=-1

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate cos [(pi)/(6) + cos^(-1) (-(sqrt(3))/(2))]

sin[(pi)/6+cos^(-1)(-(sqrt(3))/2)]=

sin [(pi) / (6) + cos ^ (- 1) (- (sqrt (3)) / (2))] =

The value of cos[cos^(-1)(-(sqrt(3))/(2))+(pi)/(6))]

Evaluate cos[cos^(-1)((-sqrt(3))/(2)+(pi)/(6))]

Evaluate "cos"["cos"^(-1)((-sqrt(3))/(2))+pi/(6)]

cos{cos^(- 1)((-sqrt(3))/2)+pi/6}

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6