Home
Class 11
MATHS
Prove that 1^1xx2^2xx3^3xxxxn^nlt=[(2n+1...

Prove that `1^1xx2^2xx3^3xxxxn^nlt=[(2n+1)//3]^(n(n+1)//2),n in Ndot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 1^1xx2^2xx3^3xx...xn^nlt ((2n+1)/(3))^((n(+1))/(2)

Prove that 1^1*2^2*3^3....n^nle((2n+1)/3)^((n(n+1))/2) .

Prove that : 1^(2)+2^(2)+3^(2)+...+n^(2)=(n(n+1)(2n+1))/(6)

Prove that : 1^(3)+2^(3)+3^(3)++n^(3)={(n(n+1))/(2)}^(2)

Using the principle of mathematical induction prove that : the 1.3+2.3^(2)+3.3^(3)++n.3^(n)=((2n-1)3^(n+1)+3)/(4) for all n in N.

Prove that: :2^(n)C_(n)=(2^(n)[1.3.5(2n-1)])/(n!)

Prove that .^(2n)C_(n)=(2^(n)xx[1*3*5...(2n-1)])/(n !) .

Prove that 1*2+2*3+3*4+.....+n*(n+1)=(n(n+1)(n+2))/(3)

Prove by PMI that 1.2+2.3+3.4+....+n(n+1)=((n)(n+1)(n+2))/(3),AA n in N

Prove that (2^(n)+2^(n-1))/(2^(n+1)-2^(n))=(3)/(2)