Home
Class 11
MATHS
Suppose f(x)=e^(a x)+e^(b x),w h e r ea!...

Suppose `f(x)=e^(a x)+e^(b x),w h e r ea!=b ,` and that `f^(primeprime)(x)-2f^(prime)(x)-15f(x)=0` for all `x` . Then the product `a b` is (a)`25` (b) `9` (c) `-15` (d) `-9`

A

25

B

9

C

-15

D

-9

Text Solution

Verified by Experts

`(a^(2)-2a-15)e^(ax)+(b^(2)-2b-15)e^(bx)=0`
`"or "(a^(2)-2a-15)=0 and b^(2)-2b-15=0`
`"or "(a-5)(a+3)=0 and (b-5)(b+3)=0`
`i.e., a=5 or -3 and b=5 or -3`
`therefore" "aneb`
Hence, `a=5 and b=-3 or a =-3 and b=5`
`"or "ab=-15`
Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose f(x)=e^(a x)+e^(b x) , where a!=b , and that f"(x)-2f'(x)-15f(x)=0 for all x . Then the product a b is equal to 25 (b) 9 (c) -15 (d) -9

Suppose f(x)=e^(ax)+e^(bx), where a!=b, and that f''(x)-2f'(x)-15f(x)=0 for all x Then the value of (ab)/(3) is

Suppose f(x)=e^(ax)+e^(bx)," where " a ne b, and that f''(x) -2f'(x)-15f(x)=0 for all x. Then the product ab is

Suppose f(x)=e^(ax)+e^(bx) ,where a!=b, and that f''(x)-2f'(x)-15f(x)=0 for all x Then the value of ab is equal to:

Suppose f(x)=e^(ax)+e^(bx), where aneb and f''(x)-2f'(x)-15f(x)=0 for all x, then the value of |a+b| is equal to......

Suppose f(x)=(3)^(px)+(3)^(qx), where p!=q and (f''(x))/((log_(e)3)^(2))-(2f'(x))/((log_(e)3))-15f(x)=0 for all x, then the value of |p+q| is

If f(x)=e^(px+2), then f(a)f(b) is

If f(x) = e^(-x) , then (f (-a))/(f(b)) is equal to

Let f:[0,2]->R be a function which is continuous on [0,2] and is differentiable on (0,2) with f(0)=1 L e t :F(x)=int_0^(x^2)f(sqrt(t))dtforx in [0,2]dotIfF^(prime)(x)=f^(prime)(x) . for all x in (0,2), then F(2) equals (a)e^2-1 (b) e^4-1 (c)e-1 (d) e^4

Suppose f is a differentiable real function such that f(x)+f^(prime)(x)lt=1 for all x , and f(0)=0, then the largest possible value of f(1) is (1) e^(-2) (2) e^(-1) (3) 1-e^(-1) (4) 1-e^(-2)