Home
Class 11
MATHS
If A is an 3xx3 non-singular matrix such...

If A is an `3xx3` non-singular matrix such that `A A^T=A^TA and B=A^(-1)A^T," then " B B^T` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is an 3xx3 non-singular matrix such that A A^T=A^T A and B""=""A^(-1)A^T , then BB^T equals (1) I""+""B (2) I (3) B^(-1) (4) (B^(-1))^T

If A is an 3xx3 non-singular matrix such that A A^' = A^' A and B""=""A^(-1)A^' , then BB^' equals (1) I""+""B (2) I (3) B^(-1) (4) (B^(-1))^'

If A is an 3xx3 non-singular matrix such that A A^'=A^' A and B""=""A^(-1)A^' , then BB' equals (1) I""+""B (2) I (3) B^(-1) (4) (B^(-1))^'

If A is an 3xx3 non-singular matrix such that AA^'=""A^' A and B""=""A^(-1)A^' , then BB equals (1) I""+""B (2) I (3) B^(-1) (4) (B^(-1))^'

If A is a 3xx3 non -singular matrix such that "AA"^(T)=A^(T)A "and" B=A^(-1)A^(T), "then" BB^(T) =

If A is a 3 xx 3 non-singular matrix such that A A^(T) = A^(T)A " and "B = A^(-1)A^(T), " then "B B^(T) is equal to

If A is an 3xx3 non-singular matrix such that AA' = A'A and B=A^(-1)A' , then BB' equals:

If A is an 3 xx 3 non - singular matrix such that AA'= A'A and B = A^(-1) A' , then BB' equals a)I + B b)I c) B^(-1) d) (B^(-1))