Home
Class 12
MATHS
If f(x) = {{:(|1-4x^(2)|",",0 le x lt 1)...

If `f(x) = {{:(|1-4x^(2)|",",0 le x lt 1),([x^(2)-2x]",",1 le x lt 2):}`, where [] denotes the greatest integer function, then

Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVE

    BANSAL|Exercise All Questions|376 Videos
  • INTEGRALS

    BANSAL|Exercise All Questions|111 Videos

Similar Questions

Explore conceptually related problems

If f(x)= {(|1-4x^2|,; 0 lt= x lt 1), ([x^2-2x],; 1 lt= x lt 2):} , where [.] denotes the greatest integer function, then f(x) is

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then

If f(x) = {{:("sin"(pix)/(2)",",x lt 1),([x]",",x ge 1):} , where [x] denotes the greatest integer function, then

Let f(x)=(x^(2)+1)/([x]),1 lt x le 3.9.[.] denotes the greatest integer function. Then

Discuss the continuity of f(x) in [0, 2], where f(x) = {{:([cos pi x]",",x le 1),(|2x - 3|[x - 2]",",x gt 1):} where [.] denotes the greatest integral function.

Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x le 2):} and g(x)={([x]",",-pi le x lt 0),(sinx",",0le x le pi):} where [.] denotes the greatest integer function. The number of integral points in the range of g(f(x)) is

Consider the function f(x) = [{:(x{x}+1",","if",0 le x lt 1),(2-{x}",","if",1 le x le 2):} , where {x} denotes the fractional part function. Which one of the following statements is not correct ?

Let f : [-1, 3] to R be defined as {{:(|x|+[x]", "-1 le x lt 1),(x+|x|", "1 le x lt 2),(x+[x]", "2 le x le 3","):} where, [t] denotes the greatest integer less than or equal to t. Then, f is discontinuous at

Let f(x)=(x^(2)+2)/([x]),1 le x le3 , where [.] is the greatest integer function. Then the least value of f(x) is

If f(x) = {{:({x+(1)/(3)}[sin pi x]",",0 le x lt 1),([2x]sgn(x - (4)/(3))",",1 le x le 2):} , where [.] and {.} denotes greatest integerd and fractional part of x respectively, then the number of points, which is not differentiable, is

BANSAL-CONTINUITY AND DIFFERENTIABILITY-All Questions
  1. Find the left and right hand derivative of the following function a...

    Text Solution

    |

  2. Find the left and right hand derivative of the following function a...

    Text Solution

    |

  3. If f(x) = {{:(|1-4x^(2)|",",0 le x lt 1),([x^(2)-2x]",",1 le x lt 2):}...

    Text Solution

    |

  4. If f(x)={a x+b ,\ xlt=-1a x^3+x+2,\ x > -1 is differentiable for all...

    Text Solution

    |

  5. Find derivative of : f(x)=cos x+|cos x|a t x=pi/2

    Text Solution

    |

  6. The number of points at which the function, f (x)={{:(min {|x|"," x ...

    Text Solution

    |

  7. If incident ray from point (-3, 2) parallel to the axis of parabola...

    Text Solution

    |

  8. Let f be differentiable at x=a\ a n d\ l e t\ f(a)!=0. Evaluate (lim)(...

    Text Solution

    |

  9. Show that the function f(x)={x^msin(1/x)0 ,x!=0,x=0 is differentiab...

    Text Solution

    |

  10. Let f(x)=sgn(x) and g(x)= x(1-x^2), The number of points at which f(...

    Text Solution

    |

  11. Q. f={(x+a if x<0), (x-11 if x>=0) g(x)={(x+1 if x<0),(x-1)^2 if x...

    Text Solution

    |

  12. Discuss the differentiability of f(x)={(x-e)2^(- 2^((1/((e-x))))), x!=...

    Text Solution

    |

  13. Find the domain of f^(prime)(x) if f(x)=[x/(1+|x|)]if\ |x|geq1 , x...

    Text Solution

    |

  14. If f(x) is differentiable at x=a and f^(prime)(a)=1/4dot Find (lim)(h-...

    Text Solution

    |

  15. Let f be a differentiable function satisfying f(x/y)=f(x)-f(y) f...

    Text Solution

    |

  16. Suppose f is a derivable function that satisfies the equation f(x+y...

    Text Solution

    |

  17. If f(x+y)=f(x)dotf(y),\ AAx in R\ a n df(x) is a differentiability...

    Text Solution

    |

  18. If f(x+y)=f(x)+f(y),AAx ,\ y in R then prove that f(k x)=kf(x)for\ AA...

    Text Solution

    |

  19. Discuss the differentiability of f(x)={(sinx^2)/x ,x!=0 0,x=0a tx=0

    Text Solution

    |

  20. Discuss the differentiability of f(x)=|x|||x-1|dot

    Text Solution

    |