Home
Class 11
MATHS
Statement 1: For f(x)=sinx ,f^(prime)(pi...

Statement 1: For `f(x)=sinx ,f^(prime)(pi)=f^(prime)(3pi)dot` Statement 2: For `f(x)=sinx ,f(pi)=f(3pi)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find domain for f(x)=[sinx] cos(pi/([x-1])) .

f:[-3 pi,2 pi]f(x)=sin3x

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

Let f(x)=2sinx+tax-3x Statement-1: f(x) does not attain extreme in (-pi//2,pi//2) Statement-2 : f(x) is strictly increasing on (-pi//2,pi//2)

Statement-1: f(x ) = log_( cosx)sinx is well defined in (0,pi/2) . and Statement:2 sinx and cosx are positive in (0,pi/2)

if f(x)=x+sinx , then find (2)/(pi^(2)).int_(pi)^(2pi)(f^(-1)(x)+sinx)dx

If f(x)=|cos x-sin x|, find f'((pi)/(6)) and f'((pi)/(3))

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertible for

If f(x)=|x|^(|sinx|) , then f'((pi)/(4)) equals

The absolute minimum value of f(x)=sinx in [0,(3pi)/(2)] is :